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Bitcoin Scalability Issues

✤ < 10 transactions per second

✤ > 135 GB of memory required

✤ No micropayment (high fees)
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Payment Channels

✤ Enable multiple payments between two users without 
committing every single payment to the blockchain 
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Payment Channel Networks (PCN)

✤ Each payment channel requires to deposit bitcoins

✤ Impractical to open a channel with every other user
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Hash Time-Lock Contracts

✤ Hash-Time Lock Contract (HTLC) enables conditional 
payments between two users
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Alice Bob

HTLC(Alice, Bob, 1, y, 30):
Pay Bob 1 BTC iff Bob shows some
x such that H(x) = y, before 30 days

Figure 1: Illustrative example of payment channel. White solid
boxes denote Bitcoin addresses and their current balance, dashed
boxes represent Bitcoin transactions, the clock denotes a time lock
contract [7], a user name along a tick denotes her signature to vali-
date the transaction and colored boxes denote the state of the pay-
ment channel. Dashed arrows denote temporal sequence. Alice �rst
deposits 5 bitcoins opening a payment channel with Bob, then uses
it to pay Bob o�-chain. Finally, the payment channel is closed with
the most recent balance.

2 BACKGROUND
In this section, we �rst overview the notion of payment channels
and we then describe payment-channel networks.

2.1 Payment Channels
A payment channel enables several Bitcoin payments between two
users without committing every single payment to the Bitcoin
blockchain. The cornerstone of payment channels is depositing
bitcoins into a multi-signature address controlled by both users and
having the guarantee that all bitcoins are refunded at a mutually
agreed time if the channel expires. In the following, we overview the
basics of payment channels and we refer the reader to [30, 48, 58]
for further details.

In the illustrative example depicted in Figure 1, Alice opens a
payment channel with Bobwith an initial capacity of 5 bitcoins. This
opening transaction makes sure that Alice gets the money back after
a certain timeout if the payment channel is not used. Now, Alice
can pay o�-chain to Bob by adjusting the balance of the deposit
in favor of Bob. Each o�-chain payment augments the balance for
Bob and reduces it for Alice. When no more o�-chain payments are
needed (or the capacity of the payment channel is exhausted), the
payment channel is closed with a closing transaction included in the
blockchain. This transaction sends the deposited bitcoins to each
user according the most recent balance in the payment channel.

The payment channel depicted in Figure 1 is an example of uni-
directional channel: it can be used only for payments from Alice to
Bob. Bidirectional channels are de�ned to overcome this limitation
as o�-chain payments in both directions are possible. Bidirectional
payment channels operate in essence as the unidirectional version.1
The major technical challenge consists in changing the direction
of the channel. In the running example, assume that the current
payment channel balance bal is {Alice: 4, Bob: 1} and further assume
1Technically, a bidirectional channel might require that both users contribute funds
to the deposit in the opening transaction. However, current proposals [37] allow
bidirectional channels with single deposit funder.

Figure 2: Illustrative example of a payment in a PCN. Non-bold
(bold) numbers represent the capacity of the channels before (after)
the payment from Alice to Bob. Alice wants to pay 2 bitcoins to Bob
via Carol, Edward and Fabi. Therefore, she starts the payment with
3 bitcoins (i.e., payment amount plus fees).

that Bob pays o�-chain one bitcoin back to Alice. The new payment
channel balance bal0 is {Alice: 5, Bob: 0}. At this point, Alice bene�ts
from bal0 balance while Bob bene�ts from bal. The solution to this
discrepancy consists on that Bob and Alice make sure that any
previous balance has been invalidated in favor of the most recent
one. Di�erent “invalidation” techniques have been proposed and
we refer the reader to [30, 58, 62] for details.

The Bitcoin protocol has been updated recently to fully support
payment channels. In particular, transaction malleability [8], along
with a set of other interesting new features, have been added to
the Bitcoin protocol with the recent adoption of Segregated Wit-
ness [15]. This event paves the way to the implementation and
testing of PCNs on the main Bitcoin blockchain as of today [67].

2.2 A Payment Channel Network (PCN)
A PCN can be represented as a directed graph G = (V,E), where
the set V of vertices represents the Bitcoin accounts and the set E
of weighted edges represents the payment channels. Every vertex
u 2 V has associated a non-negative number that denotes the
fee it charges for forwarding payments. The weight on a directed
edge (u1,u2) 2 E denotes the amount of remaining bitcoins that u1
can pay to u2. For ease of explanation, in the rest of the paper we
represent a bidirectional channel betweenu1 andu2 as two directed
edges, one in each direction.2 Such a network can be used then to
perform o�-chain payments between two users that do not have an
open channel between them but are connected by a path of open
payment channels.

The success of a payment between two users depends on the
capacity available along a path connecting the two users and the
fees charged by the users in such path. Assume that s wants to
pay � bitcoins to r and that they are connected through a path
s ! u1 ! . . . ! un ! r . For their payment to be successful, every
link must have a capacity�i � � 0i , where �

0
i = � �Pi�1j=1 fee(u j ) (i.e.,

the initial payment value minus the fees charged by intermediate
users in the path). At the end of a successful payment, every edge

2In practice, there is a subtle di�erence: In a bidirectional channel between Alice and
Bob, Bob can always return to Alice the bitcoins that she has already paid to him.
However, if two unidirectional channels are used, Bob is limited to pay to Alice the
capacity of the edge Bob! Alice, independently of the bitcoins that he has received
from Alice. Nevertheless, our simpli�cation greatly ease the understanding of the rest
of the paper and proposed algorithms can be easily extended to support bidirectional
channels.

H(x) = y

(x ,        )
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The Lightning Network

✤ Multiple “chained” HTLC enable multi-hop payments in 
the presence of untrusted intermediaries
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The Lightning Network

✤ Multiple “chained” HTLC enable multi-hop payments in 
the presence of untrusted intermediaries
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The Lightning Network

✤ Multiple “chained” HTLC enable multi-hop payments in 
the presence of untrusted intermediaries
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The Lightning Network

✤ Multiple “chained” HTLC enables multi-hop payments in 
the presence of untrusted intermediaries

✤ Bob does not gain or lose coins
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Contributions

✤ Definition of security and privacy properties for PCNs

✤ Privacy analysis of PCNs and solution (Fulgor)

✤ Concurrency analysis of PCNs and solution (Rayo)

✤ Prototype implementation
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Security Properties

✤ Our model highlights two main security properties:  

✤ Balance Security:  
 
 
 

✤ Serializability:
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Privacy Properties

✤ Our model highlights two privacy properties  

✤ (Off-path) value privacy:  
 
 
 

✤ (On-path) relationship anonymity:
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Privacy in PCNs: Challenge?

✤ Off-chain payments   =>   Privacy-preserving payments
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Figure 1: Illustrative example of payment channel. White solid
boxes denote Bitcoin addresses and their current balance, dashed
boxes represent Bitcoin transactions, the clock denotes a time lock
contract [7], a user name along a tick denotes her signature to vali-
date the transaction and colored boxes denote the state of the pay-
ment channel. Dashed arrows denote temporal sequence. Alice �rst
deposits 5 bitcoins opening a payment channel with Bob, then uses
it to pay Bob o�-chain. Finally, the payment channel is closed with
the most recent balance.

2 BACKGROUND
In this section, we �rst overview the notion of payment channels
and we then describe payment-channel networks.

2.1 Payment Channels
A payment channel enables several Bitcoin payments between two
users without committing every single payment to the Bitcoin
blockchain. The cornerstone of payment channels is depositing
bitcoins into a multi-signature address controlled by both users and
having the guarantee that all bitcoins are refunded at a mutually
agreed time if the channel expires. In the following, we overview the
basics of payment channels and we refer the reader to [30, 48, 58]
for further details.

In the illustrative example depicted in Figure 1, Alice opens a
payment channel with Bobwith an initial capacity of 5 bitcoins. This
opening transaction makes sure that Alice gets the money back after
a certain timeout if the payment channel is not used. Now, Alice
can pay o�-chain to Bob by adjusting the balance of the deposit
in favor of Bob. Each o�-chain payment augments the balance for
Bob and reduces it for Alice. When no more o�-chain payments are
needed (or the capacity of the payment channel is exhausted), the
payment channel is closed with a closing transaction included in the
blockchain. This transaction sends the deposited bitcoins to each
user according the most recent balance in the payment channel.

The payment channel depicted in Figure 1 is an example of uni-
directional channel: it can be used only for payments from Alice to
Bob. Bidirectional channels are de�ned to overcome this limitation
as o�-chain payments in both directions are possible. Bidirectional
payment channels operate in essence as the unidirectional version.1
The major technical challenge consists in changing the direction
of the channel. In the running example, assume that the current
payment channel balance bal is {Alice: 4, Bob: 1} and further assume
1Technically, a bidirectional channel might require that both users contribute funds
to the deposit in the opening transaction. However, current proposals [37] allow
bidirectional channels with single deposit funder.

Figure 2: Illustrative example of a payment in a PCN. Non-bold
(bold) numbers represent the capacity of the channels before (after)
the payment from Alice to Bob. Alice wants to pay 2 bitcoins to Bob
via Carol, Edward and Fabi. Therefore, she starts the payment with
3 bitcoins (i.e., payment amount plus fees).

that Bob pays o�-chain one bitcoin back to Alice. The new payment
channel balance bal0 is {Alice: 5, Bob: 0}. At this point, Alice bene�ts
from bal0 balance while Bob bene�ts from bal. The solution to this
discrepancy consists on that Bob and Alice make sure that any
previous balance has been invalidated in favor of the most recent
one. Di�erent “invalidation” techniques have been proposed and
we refer the reader to [30, 58, 62] for details.

The Bitcoin protocol has been updated recently to fully support
payment channels. In particular, transaction malleability [8], along
with a set of other interesting new features, have been added to
the Bitcoin protocol with the recent adoption of Segregated Wit-
ness [15]. This event paves the way to the implementation and
testing of PCNs on the main Bitcoin blockchain as of today [67].

2.2 A Payment Channel Network (PCN)
A PCN can be represented as a directed graph G = (V,E), where
the set V of vertices represents the Bitcoin accounts and the set E
of weighted edges represents the payment channels. Every vertex
u 2 V has associated a non-negative number that denotes the
fee it charges for forwarding payments. The weight on a directed
edge (u1,u2) 2 E denotes the amount of remaining bitcoins that u1
can pay to u2. For ease of explanation, in the rest of the paper we
represent a bidirectional channel betweenu1 andu2 as two directed
edges, one in each direction.2 Such a network can be used then to
perform o�-chain payments between two users that do not have an
open channel between them but are connected by a path of open
payment channels.

The success of a payment between two users depends on the
capacity available along a path connecting the two users and the
fees charged by the users in such path. Assume that s wants to
pay � bitcoins to r and that they are connected through a path
s ! u1 ! . . . ! un ! r . For their payment to be successful, every
link must have a capacity�i � � 0i , where �

0
i = � �Pi�1j=1 fee(u j ) (i.e.,

the initial payment value minus the fees charged by intermediate
users in the path). At the end of a successful payment, every edge

2In practice, there is a subtle di�erence: In a bidirectional channel between Alice and
Bob, Bob can always return to Alice the bitcoins that she has already paid to him.
However, if two unidirectional channels are used, Bob is limited to pay to Alice the
capacity of the edge Bob! Alice, independently of the bitcoins that he has received
from Alice. Nevertheless, our simpli�cation greatly ease the understanding of the rest
of the paper and proposed algorithms can be easily extended to support bidirectional
channels.
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contract [7], a user name along a tick denotes her signature to vali-
date the transaction and colored boxes denote the state of the pay-
ment channel. Dashed arrows denote temporal sequence. Alice �rst
deposits 5 bitcoins opening a payment channel with Bob, then uses
it to pay Bob o�-chain. Finally, the payment channel is closed with
the most recent balance.
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In this section, we �rst overview the notion of payment channels
and we then describe payment-channel networks.

2.1 Payment Channels
A payment channel enables several Bitcoin payments between two
users without committing every single payment to the Bitcoin
blockchain. The cornerstone of payment channels is depositing
bitcoins into a multi-signature address controlled by both users and
having the guarantee that all bitcoins are refunded at a mutually
agreed time if the channel expires. In the following, we overview the
basics of payment channels and we refer the reader to [30, 48, 58]
for further details.

In the illustrative example depicted in Figure 1, Alice opens a
payment channel with Bobwith an initial capacity of 5 bitcoins. This
opening transaction makes sure that Alice gets the money back after
a certain timeout if the payment channel is not used. Now, Alice
can pay o�-chain to Bob by adjusting the balance of the deposit
in favor of Bob. Each o�-chain payment augments the balance for
Bob and reduces it for Alice. When no more o�-chain payments are
needed (or the capacity of the payment channel is exhausted), the
payment channel is closed with a closing transaction included in the
blockchain. This transaction sends the deposited bitcoins to each
user according the most recent balance in the payment channel.

The payment channel depicted in Figure 1 is an example of uni-
directional channel: it can be used only for payments from Alice to
Bob. Bidirectional channels are de�ned to overcome this limitation
as o�-chain payments in both directions are possible. Bidirectional
payment channels operate in essence as the unidirectional version.1
The major technical challenge consists in changing the direction
of the channel. In the running example, assume that the current
payment channel balance bal is {Alice: 4, Bob: 1} and further assume
1Technically, a bidirectional channel might require that both users contribute funds
to the deposit in the opening transaction. However, current proposals [37] allow
bidirectional channels with single deposit funder.

Figure 2: Illustrative example of a payment in a PCN. Non-bold
(bold) numbers represent the capacity of the channels before (after)
the payment from Alice to Bob. Alice wants to pay 2 bitcoins to Bob
via Carol, Edward and Fabi. Therefore, she starts the payment with
3 bitcoins (i.e., payment amount plus fees).

that Bob pays o�-chain one bitcoin back to Alice. The new payment
channel balance bal0 is {Alice: 5, Bob: 0}. At this point, Alice bene�ts
from bal0 balance while Bob bene�ts from bal. The solution to this
discrepancy consists on that Bob and Alice make sure that any
previous balance has been invalidated in favor of the most recent
one. Di�erent “invalidation” techniques have been proposed and
we refer the reader to [30, 58, 62] for details.

The Bitcoin protocol has been updated recently to fully support
payment channels. In particular, transaction malleability [8], along
with a set of other interesting new features, have been added to
the Bitcoin protocol with the recent adoption of Segregated Wit-
ness [15]. This event paves the way to the implementation and
testing of PCNs on the main Bitcoin blockchain as of today [67].

2.2 A Payment Channel Network (PCN)
A PCN can be represented as a directed graph G = (V,E), where
the set V of vertices represents the Bitcoin accounts and the set E
of weighted edges represents the payment channels. Every vertex
u 2 V has associated a non-negative number that denotes the
fee it charges for forwarding payments. The weight on a directed
edge (u1,u2) 2 E denotes the amount of remaining bitcoins that u1
can pay to u2. For ease of explanation, in the rest of the paper we
represent a bidirectional channel betweenu1 andu2 as two directed
edges, one in each direction.2 Such a network can be used then to
perform o�-chain payments between two users that do not have an
open channel between them but are connected by a path of open
payment channels.

The success of a payment between two users depends on the
capacity available along a path connecting the two users and the
fees charged by the users in such path. Assume that s wants to
pay � bitcoins to r and that they are connected through a path
s ! u1 ! . . . ! un ! r . For their payment to be successful, every
link must have a capacity�i � � 0i , where �

0
i = � �Pi�1j=1 fee(u j ) (i.e.,

the initial payment value minus the fees charged by intermediate
users in the path). At the end of a successful payment, every edge

2In practice, there is a subtle di�erence: In a bidirectional channel between Alice and
Bob, Bob can always return to Alice the bitcoins that she has already paid to him.
However, if two unidirectional channels are used, Bob is limited to pay to Alice the
capacity of the edge Bob! Alice, independently of the bitcoins that he has received
from Alice. Nevertheless, our simpli�cation greatly ease the understanding of the rest
of the paper and proposed algorithms can be easily extended to support bidirectional
channels.
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Privacy in PCNs: Our Solution

✤ Our setting: P2P Network

✤ Our goal: 
✤ On-chain operations: HTLC as in the Lightning Network 

✤ Rest of cryptographic operations must be off-chain

✤ Full compatibility with the current Bitcoin script

✤ Our solution:
✤ Fulgor: Based on Multi-hop HTLC
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Multi-hop HTLC

✤ Building block: Non-interactive zero knowledge (ZKBoo [GMO16])
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Multi-hop HTLC

✤ Building block: Non-interactive zero knowledge (ZKBoo [GMO16])
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Multi-hop HTLC

✤ Building block: Non-interactive zero knowledge (ZKBoo [GMO16])
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Multi-hop HTLC

✤ Building block: Non-interactive zero knowledge (ZKBoo [GMO16])
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Multi-hop HTLC

✤ Building block: Non-interactive zero knowledge (ZKBoo [GMO16])
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Multi-hop HTLC
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x0 : H(x0) = y0
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Multi-hop HTLC
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Multi-hop HTLC

✤ Soundness of NIZK => Bob does not loss coins 

✤ Zero-knowledge of NIZK => Bob does not steal coins
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Concurrency in PCNs

✤ Concurrent on-chain payments can be easily ordered by miners

✤ No user has a complete view of off-chain concurrent payments 
in a P2P network

✤ A blocking solution can lead to deadlocks
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Concurrency in PCNs: Our Solution

✤ A non-blocking solution (Rayo): at least one payment finishes

✤ Main idea: Use global transaction identifiers
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Concurrency vs Privacy Tradeoff

✤ Global identifiers leak transaction ID to intermediate users

✤ Non-blocking solutions cannot achieve strong privacy
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Implementation and Performance

✤ Running time of our solution largely dominated by NIZK
✤ Creating a proof requires 309 ms. Proof verification requires 130 ms 

✤ Proof size: 1.65MB

✤ 5-hop payment:
✤ Non-private (LN): 609 ms

✤ Private: 1929 ms and ~ 5 MB (Proofs are not included in the blockchain)
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Conclusions

✤ Define the security and privacy properties of interest in PCN

✤ Inherent tradeoff between concurrency and privacy

✤ Fulgor and Rayo: two approaches for concurrency and privacy

✤ Our solutions are efficient, compatible with Bitcoin script and 
without storage overhead in the blockchain
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