REDESIGNING BITCOIN'S FEE MARKET arXiv:1709.08881

Ron Lavi - Technion

Or Sattath Ben-Gurion U.

Scaling Bitcoin 2017

Aviv Zohar - Hebrew U.

CURRENT FEE MECHANISM IN BITCOIN

- Miners can only include txs that fit in at most 1MB.
- Pay what you bid: users specify the fees, and they pay it only if they are included in a block.
- Miner's inclusion strategy: include the highest transactions by their fee/byte that fit into 1MB.
- From now on we assume all txs are of the same size in bytes.

WHAT IF HARDWARE PARAMETERS WEREN'T AN ISSUE?

- Suppose there are negligible block rewards, and the bandwidth, CPU and disk-space get a x100 boost. How should Bitcoin be changed?
- First guess: increase the block-size by a factor of 100.
- Economically risky tragedy of the commons / race to the bottom:
 - Blocks are not full
 - Miners do not have incentives not to take ~O fees.
 - Users decrease fees to ~0
 - <u>Revenue for the miners diminishes</u>
 - Double spending becomes very cheap

DESIGN GOALS

- Increasing the block-size can decrease the miners' revenue
- In the long run, fees are the main income for the miners.
- Design goal: maximize the revenue for the miners. In particular, increasing the bandwidth etc. should increase the miner's revenue.
- The block size affects the security (orphaning rate, decentralization, etc.) and economic aspects (revenue for the miners).
- Design goal: decouple economic and security concerns.
- Design goal: a simple way for the user to decide on her fee.

BITCOIN MINING AS AN AUCTION

- Bitcoin users willing to pay tx fees = Buyers
- Miner = Auctioneer (+seller)
- Auction theory standard assumptions: buyers do not collude & have strong identities, auctioneer is trusted (but not the seller), and the auction is conducted once.

RESULTS: TWO BITCOIN FEE MECHANISMS

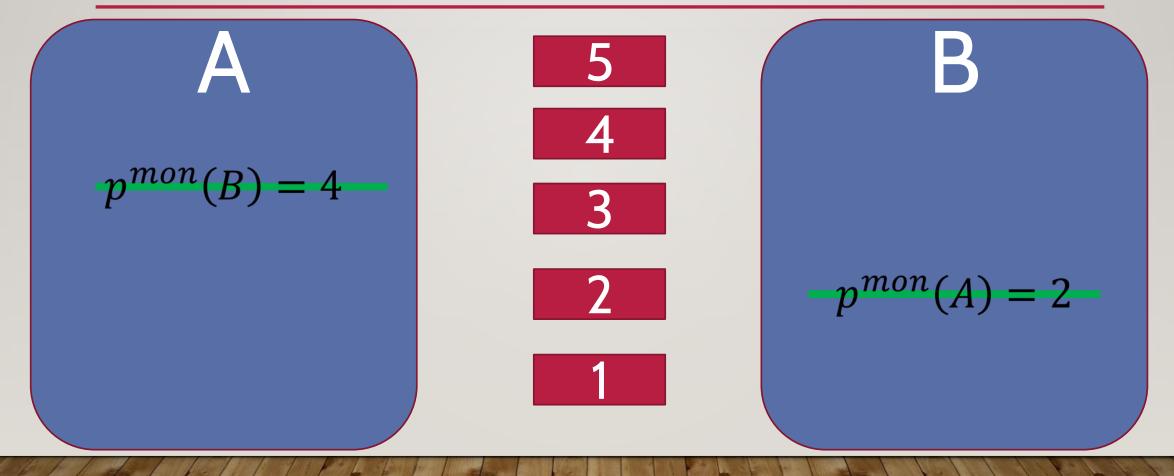
RSOP MECHANISM

- Beautiful but not very useful
- Sensitive to miners' manipulation

MONOPOLISTIC PRICE MECHANISM

 Not so beautiful, but more useful

MONOPOLISTIC REVENUE & PRICE


- How to price an ebook, assuming you can't do price discrimination?
- Let v_i denote the i'th user's valuation, where $v_1 \ge v_2 \ge \cdots v_n$.
- Monopolistic revenue: $R(v_1, ..., v_n) = \max_i v_i \cdot i$
- Monopolistic price: the price which maximizes the monopolistic revenue.

MONOPOLISTIC REVENUE & PRICE: EXAMPLE

CHALLENGE: MANIPULATIONS

- A users bid b_i may be different than her valuation (maximal willingness to pay) v_i .
- In Bitcoin, a user may place multiple bids addressed in the manuscript, but not in the talk.

RSOP AUCTION (Random Sampling Optimal Price) Goldberg et al. 2006

RSOP AUCTION (Random Sampling Optimal Price) Goldberg et al. 2006

- This auction is truthful: you loose nothing from setting $b_i \coloneqq v_i$ and encourages the users to reveal their true values.
- Reason: the offer price you are offered is determined by the choice of people in the other group.
- Revenue converges to the monopolistic price: for bounded range b,

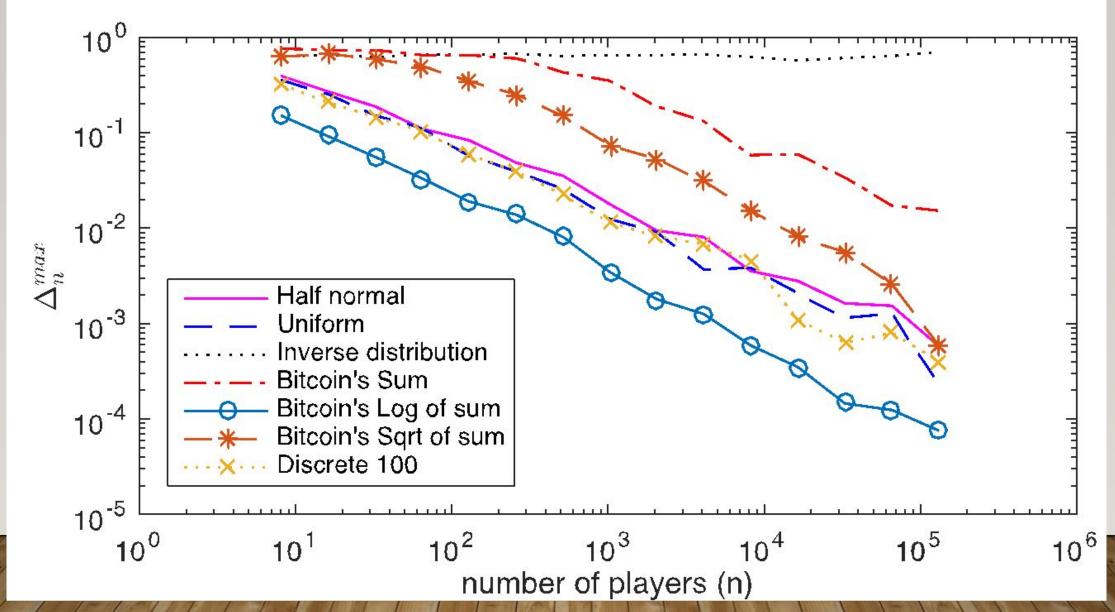
$$\lim_{n \to \infty} \frac{R(b)}{RSOP(b)} = 1$$

RSOP MECHANISM - BITCOIN

- Users specify a maximal fee (they may pay <u>less</u>).
- Miner include <u>all</u> mempool tx in their block.
- Block hash used to randomly partition the bids [Bonneau-Clark-Goldfeder'15].
- Only txs that "win" according to the RSOP auction are considered valid.
- 2 problems:
 - <u>Blocks are huge</u>: including all the transactions is unrealistic
 - <u>Prone to miners' manipulation:</u> Miners gain by including fake transactions / not including valid ones.

MONOPOLISTIC PRICE MECHANISM

- Users specify a maximal fee (they may pay less).
- If a block contains transactions $b_1 \ge \cdots \ge b_m$, all users pay the minimal fee b_m .
- Miners are advised to include all txs that pay at least the monopolistic price, <u>up to</u> some upper bound on the block size.
- Definition: impatient users are only interested in being included in the next block (and have 0 utility from inclusion in later blocks).
- Caveat: our analysis assumes that users are impatient.
- Problem: Even impatient strategic users may gain (very) little by reporting $b_i \leq v_i$.
- Essentially, the manipulation decreases the monopolistic price.


MANIPULATING THE MONOPOLISTIC PRICE MECHANISM

- * $p^{mon}(2.5,2,1) = 2.$
- $p^{mon}\left(\frac{2}{3} + \epsilon, 2, 1\right) = \frac{2}{3} + \epsilon$. \leftarrow Called the Strategic Price.
- Instead of paying 2, the first player pays ~2/3 66% discount!

MONOPOLISTIC PRICE MECHANISM -MANIPULATIONS

- Theorem (informal): For any finite support users' valuation distribution, the worst discount ratio from a manipulation of a single player (assuming all others are honest), goes to O as the number of users grow.
- Concerns we evaluated empirically:
 - How fast does the manipulation ratio decreases?
 - What if the valuation distribution does not have finite support size?

MONOPOLISTIC PRICE MECHANISM: EMPIRICAL RESULTS

DISCUSSION & OPEN PROBLEMS

- How much security should the Bitcoin network "buy"? Are we buying too much / too little security in terms of hash-power?
- The current fee mechanism is not the most "natural" one
- How can we get real data on the "willingness to pay" for the fees? Important to understand how well this proposal would preform.
- An applicable RSOP mechanism?
- Bitcoin Dev. mailing list has an interesting discussion, also about implementation.

THANK YOU!

MULTI-BID STRATEGY

- Values: 5, 2, 1, 1.
- Everyone honest first player wins, pays 5.
- If player two submits two bids with a value of 1, she gets in, everyone win and she pays two.
- Non-trivial: we show an efficient O(n) algorithm to find the optimal multi-bid strategy.
- In practice, barely happens: never happened during our simulations when number of users ≥ ~10.