Using Chains for what They're Good For J

Andrew Poelstra

usingchainsfor@upsoftware.net

Scaling Bitcoin, November 5, 2017

1/14



On-Chain Smart Contracting

@ Bitcoin (and Ethereum, etc.) uses a scripting language to
describe smart contracts and enforce their execution.

@ These scripts must be downloaded, parsed, validated by all full
nodes on the network. Can’t be compressed or aggregated.

@ Valid execution can't be assured until the transaction is
confirmed: unpredictable, long delays.

)

14



On-Chain Smart Contracting

@ Script verification rules must be agreed upon by all
participants.

@ The details of the script are visible forever, compromising
privacy and fungibility.

@ Miners can see contract contents before including them, and
may not want to (potential legal liability, external incentives,
etc.)

3/14



On-Chain Smart Contracting

@ Most contracts need only one thing from the blockchain: an
immutable ordering of commitments to prevent
double-spending.

14



Execution vs Verification

@ Blockchain validators must check whether scripts execute
successfully.

@ This is strictly easier than actually executing the scripts
(Post’s Theorem). May be assisted by a witness.

@ In crypto, we talk about (zero-knowledge) arguments that
some script returns true. May be assisted by a transcript.

5/14



Verifiability vs Public Verifiability

@ Blockchain verifiers must check that coins are only spent with
correct authorization, and only once.

@ They don't necessarily need to know what “correct
authorization” means, they just need to agree on it.

@ Consider moving coins to a multisig output, where multiple
distrusting signers check external conditions before signing to
move them to their final destinations (Gibson 2017).

6/14



Scriptless Scripts

@ Suppose these distrusting signers want to enforce conditions
on each other: a “smart contract”.

@ The script paradigm demands they reveal witnesses to their
conditions on the public chain, along with their signature.

e But what if the signature was the witness? Then the
blockchain would only need to check a multisignature, or
should | say. ..a scriptless script.

14



Scriptless Scripts

@ Scriptless scripts: magicking digital signatures so that they
can only be created by faithful execution of a smart contract.

@ Limited in power, but not nearly as much as you might expect.

@ Mimblewimble is a blockchain design that supports only

scriptless scripts, and derives its privacy and scaling properties
from this.

14



Schnorr multi-Signatures are Scriptless Scripts

@ By adding Schnorr signature keys, a new key is obtained which
can only be signed with with the cooperation of all parties.

@ The parties must interact to sign: first they agree on the
message and nonces, then they contribute to the signatures.

e (Don't try this at home: some extra precautions are needed to
prevent adversarial choice of keys.)

14



Adaptor Signatures

@ Instead use another ephemeral keypair (t, T) and treat T as
the “hash” of t.

@ When doing a multi-signature replace the old nonce R with
R + T, and now the signature s must be replaced by s + ¢t to
be valid.

@ Now the original s is an “adaptor signature”. Anyone with this
can compute a valid signature from t or vice-versa. They can
verify that it is an adaptor signature for T, no trust needed.

10/14



Atomic (Cross-chain) Swaps

@ Parties Alice and Bob send coins on their respective chains to
2-of-2 outputs. Bob thinks of a keypair (t, T) and gives T to
Alice.

@ Before Alice signs to give Bob his coins, she demands adaptor
signatures with T from him for both his signatures: the one
taking his coins and the one giving her coins.

@ Now when Bob signs to take his coins, Alice learns t from one
adaptor signature, which she can combine with the other
adaptor signature to take her coins.

11 /14



Basic Lightning

@ Suppose Alice is paying David through Bob and Carol. She
produces an onion-routed path

Alice — Bob — Carol — David

and asks for public keys B, C and D from each participant.

@ She sends coins to a 2-of-2 between her and Bob. She asks
Bob for an adaptor signature with B + C + D before signing
to send him the coins.

@ Similarly Bob sends coins to Carol, first demanding an adaptor
signature with C + D from her. Carol sends to David,
demanding an adaptor signature with D.

12 /14



Features of Adaptor Signatures

@ Adaptor signatures work across blockchains, even if they use
different EC groups, though this requires a bit more work.

@ After a signature hits the chain, anyone can make up a (¢, T)
and compute a corresponding “adaptor signature” for it, so
the scheme is deniable. It also does not link the signatures in
any way.

@ Adaptor signatures are re-blindable, as we saw in the
Lightning example. This is also deniable and unlinkable.

13 /14



Thank You

Andrew Poelstra <whattheyregoodfor@uwpsoftware.net>

14/14



