Plasma on Bitcoin;:
What It Could Look Like

https://plasma.io/
Joseph Poon <joseph@lightning.network>
Scaling Bitcoin 2017-11-05

Context

Nothing in This Presentation is Prescriptive. Plasma is very much in development,
including refining the architecture, therefore this isn’t a presentation about how
things should be, but more about how things could be

Not a Formal Proposal to Change Bitcoin. Not proposing this will go into Bitcoin
anytime soon, but the goal is to have experiments of how to make Plasma work
with Bitcoin and UTXO formats. Could be experimented within sidechains

Second Layer is More Than Payment Channels. This presentation is more about
exploration around cryptoeconomics and its relationship with data availability

Bitcoin Specific Properties. Will give an overview of Plasma, with bitcoin-specific
properties and how it affects Plasma’s design, not a presentation on Rootstock

Blockchain Scaling: Security and Scalability

Security. Security of blockchains are derived from everyone computing the same
thing at once

Self-validated assurance. Don’t outsource assurance to others, fully validate all
relevant activity yourself, e.g. chain of payments.

Ledger Scalability. The capacity of the UTXO set is necessarily constrained, but
results in limitations with the number of participants (and combinations of

participants with multisig outputs), even with second layer payments which helps
scale transaction volume.

Minimize Ledger State Storage

Minimize global validation. If the blockchain is the ground truth, then we should
minimize the amount of ground truth being validated

Disagreement around global consensus is insanity. Minimizing the amount of
assertions, especially with incomplete information runs the risk of consensus faults

State synchronization across participants
Need to enforce current state, with global data it's easy
Withdrawals are the most complex aspect

Data availability is the hardest part. Making proofs require evidence. If the
blockchain is the adjudication layer, evidence is the foundation for attestation

Intuition Around the Channels and Lightning Network

Background. Not going over how LN works, but is foundational to understanding
the mechanisms for Plasma

Off-chain activity, on-chain enforcement. All activity is bonded on-chain and is
ultimately enforceable if there’s any disagreement

Infinite transactions between two parties, but only net-settle current state

A network of these channels can create contingent payments across multiple
participants

Two-party synchronicity. Two parties agree on the current state before moving
forward. Since both parties need the data to move forward, data availability for

those two parties.

Increasing Participants Increases Complexity

Multiparty output enforcement. Two parties can come to agreement, but for
ledger state, that requires many parties to come to agreement

Multiparty liveness constraints. If you’re dealing with hundreds of people, not all of
them will be online. Not as significant of an issue with payments over LN, but
definitely a problem when thousands of people are in a shared ledger with
synchronicity requirements

Incentives against halting. With computation, there is increased incentives towards
halting the chain or acting byzantine

Scaling the Ledger. Channels require on-blockchain transactions for data
availability

The data availability
problem permeates all
of these issues.

Possible Properties of Plasma on Bitcoin

Blockchains in Blockchains. Plasma is a construction of blockchains in
blockchains. State of these child blockchains are committed to the root chain

Fraud Proofs. If an incorrect state is committed, anyone else can submit proof to a
parent/root chain and disagree

A set of opcodes and outputs. A set of opcodes determine fraud proofs, outputs
constantly updated. Flexible output signing for malleability

Helps With Some Second Layer Security. Worst-case reduces m-of-n constructions
to 1-of-n in the event of faulty behavior

Compatible with Lightning. More ledger availability improves reliability and
performance

Plasma as an Intermediate Layer

Plasma is not fast. Relies on Lightning for fast
transactions. Lightning may likely be the direct
interface for clients, with lower levels behind the
scenes

Runs between Lightning and the base layer
chain. Build layers of blockchain scaling

Ledger Capacity. Increases the capacity to hold
the UTXO set and increases the ability to close
out transactions at once. Greater flexibility for
many Lightning channel exits.

Ultimately secured by the underlying chain.
Both Lightning and Plasma rely upon the
underlying chain for security

E Lightning Network:
' Instant Contracts
: and Payments

Plasma:
Ledger and
Capacity Scaling

v

Blockchain

Design Goals

One blockchain can encompass all worldwide ledger state. Data is committed to
the root blockchain and it is only in the event of disputes of byzantine behavior that
the fraud is proven and rolled back

Trust minimization. The primary risks left in the design is around chain halting and
blockspace availability, which is significantly mitigated with good parent chain
selection

Payment and ledger scalability. Can hold an incredible amount of ledger entries,
more robust against byzantine actors than multisig for holding a user’s single
output of a hundredth of a cent

Many Blockchains on a Blockchain

Initialize the Plasma blockchain. Send to an output defining the
closure conditions with a special output

E.g. OP_PUSHDATA2 with a new Transaction version for
Plasma opcodes. Encodes script in a pushdata similar to
BIP 0016 or SegWit.

OP_PUSHDATA2[OP_CREATEPLASMABLOCK 5 20
<pubkey_validators_schnorr>]

Localized ledger state. Only periodic commitments (Plasma
blockchain blockhashes) submitted to the blockchain.

Consensus rules defined in fraud proofs. If any of the blocks
are invalid, anyone can submit proof of fraudulent state
transition to roll back blockchain

Plasma Chain

\

Plasma Chain

>

Plasma Chain

Blockchain

/

«

Plasma Chain

Periodic Commitments to the Root Chain

Only the Plasma blockhash/header committed to the root
chain. This means that a minimum amount of data is
submitted to the chain. This submission is a commitment to
blockstate as well as creates ordering. The output is
updated/spent every time.

Enforcement may require all outputs to be scripts,
not P2SH due to data availability (potentially
controversial!)

Complex computation and value transfer. State transitions
can occur in the Plasma blocks (e.g. between Plasma Block
#2 and #3), but only tiny commitments are included to the
root chain

Scale. The root chain doesn’t bother evaluating state unless
someone disputes the data. However, data availability is
needed to prove fraud! This has been the fundamental
problem of non-global computation!

Plasma
Block #1

..................

Alice
1BTC

Alice has 1 BTC held in the Plasma
blockchain. The record is in the Plasma block.
Consensus is enforced by fraud proofs on the
blockchain in the event of invalid blocks.

Plasma . >

Block #2

Blockchain

AN

Plasma
Block #3

Enforcible commitments, block header
submitted on the blockchain.

1 BTC held on blockchain output

Fraudulent State Transitions

Invalid state transitions is the complexity around
child blockchains. Moving funds in and out of the
Plasma chain is only viable if one can be assured of
state transitions.

Plasma

Proving fraud only in entry and exit is insufficient. If Block #1
you can reliably prove funds committed to the Plasma
chain is valid by doing full-node validation of Bitcoin, as
well as exits by providing proofs of the child chain to
the root chain, you still haven’t proven validity of state
transitions, as the fraud in the child chain can occur
between entry and exit

................

.
:__): Plasma

Block #2

..................

Blockchain

Plasma
Block #3

Plasma
Block #4

Fraud Proof Enforcement

The Plasma output on the root blockchain contains
mechanisms to enforce using fraud proofs. If a
fraudulent Plasma block is created and propagated,
anyone who receives it can verify it is fraudulent as
the rules are part of the chain consensus.

Requires a LOT of new opcodes to prove fraud

Example. Let’s say a block is created and is invalid.
Alice notices her ledger entry balance was removed
in block #4, but she didn’t spend her funds in the
Plasma chain. She (or anyone else) submits a proof
that it was removed (proof of exclusion) by including
the merkleized commitment of the ledger and
transactions. Block #4 gets rolled back and the
signers of that block get penalized

Plasma
Block #1

..................

T Plasma
>

Block #2

.................

Blockchain

1

Plasma S|
Block #3

Y
%

Block #4
Fraud Proof
Transaction

Alice submits a fraud proof to the root chain

The Core Novelty in Plasma is around Exits

Exiting Byzantine Behavior. Pre-design the
consensus rules so that all Plasma blockchains
allows for orderly exits

Alice exits her funds off the Plasma chain,
Alice as she cannot validate block #4 due to
1BTC a block withholding attack.

Data unavailability. When blocks are withheld,

we need to be able to exit. The solution for data \

unavailability is not to make it available (may be b Pasma ' ol pasma — I
. : Block #1 e Block #2 - Block #3 > Block #4
impossible), but rather to create mitigationsin @ P :

the event that occurs. This is the core T D

insight/novelty around Plasma Blockchain

Exit upon unavailability. When you discover
blocks being withheld, you exit to another
Plasma blockchain or the root blockchain as
soon as possible

Blockspace Availability Using Nested Trees

Tree of blockchains. If we are able to create

scaling by creating a blockchain within a
blockchain, we can go deeper

Blockspace availability and fault recovery. If the

validator set is different between parents of
chains, there is greater chance of block
availability to cheaply recover from faults

Many blockchains, one commitment. The block

commitments flows up, with only one

commitment to the root chain in the best case

Merkleized proofs of chains. The scriptSig

contains proof of the merkle branch of the chain

being referenced

Alice
1 BTC
Plasma
Blockchain
(3rd Tree Depth)
Plasma Plasma Plasma
Blockchain Blockchain Blockchain
(2nd Tree Depth) (2nd Tree Depth) (2nd Tree Depth)

Plasma
Blockchain
(1st Tree Depth)

l

Blockchain

Data Availability of Script Outputs

Problem 1: Data Availability is necessary for spending from Plasma block commitments

Every commitment spends into a new output. The output must have sufficient data to generate
merkleized proofs. Therefore, the output script must be provided.

Problem 2: One needs Data Availability of old Plasma blocks!

This means that since the output updates every time, one must commit to the past n blocks in
every output.

However, this creates huge memory requirements.

TXO Commitments to the rescue! Build a TXO commitment of old blocks

Example TXO Commitment of old blocks

Include as part of the output the data
necessary for the new block. Example scriptSig
for update:

OP_PUSHDATA2[OP_NEWPLASMABLOCK
<merkle tree data required to add new state>
<schnorr_sig and associated data to prove
schnorr sig> <prev_blockhash>]

In order to update, the output merkle root
must match the computed branch changes
in the scriptSig spending the previous
output

Note: this presumes the sig is malleable

Merkleized TXO set
changes of Plasma
Block History

Nonce/blockheight
and previous
blockhash

Signature(s)
and associated
info for signatures

scriptSig

Proof of Stake on Proof of Work

Proof-of-Authority is possible. A single party creates the blocks and signs off on it.
If it’s invalid, that party gets penalized. Hardcoded.

Can also do multiparty agreement such as PoS. A set of participants must agree
to finalize Plasma blocks via Schnorr signature

Second Layer Proof of Stake. But how to do PoS participant selection? Presumes
the participant set remains the same. Changing affects incentive and Plasma
currently assumes token issuance for cryptoeconomic security

Create a true reserve currency. History rhymes, not repeats. Reserve currency in a
multi-blockchain world. Could move Bitcoin based on activity on other blockchains
if the other chain knows how to represent itself as a Plasma block

Future Work

Mechanism Improvements. Creating more incentives for correct exits

Finality designs. Presumes root chain reaches finality similar to LN, has a hard
dependency, more research on chain finality incentives

Minimize block withholding attack incentives. Recursive ZK-SNARKs/STARKSs
could possibly provide mitigations around withheld fraudulent state transitions,
minimizing the need for exit timing mechanisms. Something something
accumulators (Suggested by Laolu and Vitalik, but idklol)

Minimizing load on a UTXO model in the root chain. It’s possible construct it much
simpler if we can hold more complex state, but has tradeoffs

Introducing UTXO computation. Output requires SNARKs/STARKSs proof to spend

Thank you!

https://plasma.io
Joseph Poon <joseph@lightning.network>

