
FLYCLIENT

Loi Luu, Benedikt Bünz, Mahdi Zamani

SUPER LIGHT CLIENT FOR CRYPTOCURRENCIES

trans: H()

prev: H()

trans: H()

prev: H()
trans: H()

prev: H()

Hash chain of blocks

H() H()

H() H() H() H()

transaction transaction transaction transaction

Hash tree (Merkle tree)
of transactions in each
block

Recall: Bitcoin blockchain format

2

trans: H()

prev: H()

trans: H()

prev: H()
trans: H()

prev: H()

Hash chain of blocks

H() H()

H() H() H() H()

transaction transaction transaction transaction

Validity of a blockchain

✅✅✅✅

1. Transactions are valid
2. Merkle tree correct

✅

✅

3

mrkl_root: H()

prev: H()

mrkl_root: H()

hash: 0x0000

nonce: 0x7a83

prev: H()

hash: hash: 0x3485...hash: 0x6a1f...

nonce: 0x0000...nonce: 0x0001...

hash: 0xc9c8...

nonce: 0x0002...

hash: 0x300c...

nonce: 0xffff...

hash:

nonce: 0x0000...

hash: 0xd0c7...

nonce: 0x0001...

hash: 0x0224...hash: 0x0000...

nonce: 0xf77e...

mrkl_root: H()

prev: H()

hash: hash: 0x3485...hash: 0x6a1f...

nonce: 0x0000...nonce: 0x0001...

hash: 0xc9c8...

nonce: 0x0002...

hash: 0x300c...

nonce: 0xffff...

hash:

nonce: 0x0000...

hash: 0xd0c7...

nonce: 0x0001...

hash: 0x0224...hash: 0x0000...

nonce: 0xf77e...

≤ 00000000000000001FB89300

70+ leading zeroes required...

Hash

3. Validity of a block header

✅

✅

4

Two valid blockchains?
This is the

blockchain

No this is the
blockchain

❓

5

Longest chain rule

❗
�

Take the longest chain!
Harder to produce.

6

Proof of work conjecture

• Honest mining is a dominant equilibrium strategy
• The majority of miners act rational

• Implies that longest chain follows the rules of the network

• Sleeping beauty property: You can always distinguish honest and honest
chains after being offline

• Does not (necessarily) hold for proof of stake

• As long as one of the nodes you are connected to is honest you will find the
best chain

7

Blockchain size: A growing problem

How am I going to
store 150 GB

8

trans: H()

prev: H()

trans: H()

prev: H()
trans: H()

prev: H()

H() H()

H() H() H() H()

transaction transaction transaction transaction

Simple Payment Verifying Client (Satoshi 2008)

Just store the
block headers

9

mrkl_root: H()

prev: H()

mrkl_root: H()

hash: 0x0000

nonce: 0x7a83

prev: H()

hash: hash: 0x3485...hash: 0x6a1f...

nonce: 0x0000...nonce: 0x0001...

hash: 0xc9c8...

nonce: 0x0002...

hash: 0x300c...

nonce: 0xffff...

hash:

nonce: 0x0000...

hash: 0xd0c7...

nonce: 0x0001...

hash: 0x0224...hash: 0x0000...

nonce: 0xf77e...

mrkl_root: H()

prev: H()

hash: hash: 0x3485...hash: 0x6a1f...

nonce: 0x0000...nonce: 0x0001...

hash: 0xc9c8...

nonce: 0x0002...

hash: 0x300c...

nonce: 0xffff...

hash:

nonce: 0x0000...

hash: 0xd0c7...

nonce: 0x0001...

hash: 0x0224...hash: 0x0000...

nonce: 0xf77e...

≤ 00000000000000001FB89300

70+ leading zeroes required...

Hash

Verify block headers

✅

✅

10

Use the longest chain rule

❗
�

11

trans: H()

prev: H()

trans: H()

prev: H()
trans: H()

prev: H()

H() H()

H() H() H() H()

transaction transaction transaction transaction

Can’t verify all transactions (but that’s ok)

❓❓❓❓

❓

❓

Assumption:
Longest chain is
produced honestly

12

trans: H()

prev: H()

trans: H()

prev: H()
trans: H()

prev: H()

transaction

Can verify specific transactions (with help)

❓

13

trans: H()

prev: H()

trans: H()

prev: H()
trans: H()

prev: H()

H()

transaction

Can verify specific transactions (with help)

✅

14

15

SPV Properties and Problems
• Can determine the longest chain

• Can verify transaction inclusion

• Does not grow with #transactions

• 80 bytes * #blocks (Bitcoin)

• 508 bytes * #blocks (Ethereum)

• Sufficient for sidechains and swaps

• Can’t verify all transactions

• Grows with #blocks

• Less block time-> larger SPV client

• 40 MB in Bitcoin

• 2.2 GB in Ethereum

• Especially bad for multi-chain clients

• SNARK or CS-Proof/CIP/STARK (Micali 91, Ben-Sasson et al. 17)

• Constant size non-interactive proof that chain has length X

• Circuit verifies full blockchain

• Not practical for prover

• SNARKs closer to being practical but trusted setup

Sublinear SPV-Clients: SNARKs

16

• Kyriasis, Miller, Zindros 17
• Based on Kiayias, Lamprou, Stouka 16 and Back et al. 14

• Insight: If I want to find x such that H(x) has n 0s then I will find 2 x’ such that
H(x’) has n-1 0s, 4 x’’ such that H(x’’) has n-2 0s …

• Best quality proof of work indicates quality of whole chain

• Use a skiplist to point to proofs with less proofs of work

• O(log(n)*log(log(n))) proof size

Sublinear SPV-Clients: NiPoPoWs

17

• High quality blocks do not give extra reward

• But they are important for NiPoPows1

• Bribe honest rational miners to throw away super high quality blocks

• Main chain “looks” worse which makes fooling SPV client easier

• Does not violate NiPoPow’s security proof because honest mining and not
rational mining is assumed

• Motivates search for different NiPoPows

NiPoPoW bribery attack

18

Append L2 Append L3

L0 L1

Root 0

L0
L2

L1

Root 1

L1L0 L3L2

Root 3

Merkle Mountain Ranges (Todd 16)

Log(n) inclusion proofs
Log(n) updates
nth tree commits to kth tree k<n
Log(n) difference proofs

Flyclient: A different approach to super-light clients

trans: H()

prev: H()

trans: H()

prev: H()
trans: H()

prev: H()

20

Flyclient: A different approach to super-light clients

trans: H()

root: H()

trans: H()

root: H()
trans: H()

root: H()

Store just
the head

21

Flyclient: A different approach to super-light clients

trans: H()

root: H()
trans: H()

root: H()

Store just
the head

Merkle Tree

22

transaction

trans: H()

root: H()
trans: H()

root: H()

Verifying Transaction

H()

✅

Chain head

23

Flyclient: Two heads?
This is the

head

No this is the
head

❓ Assumption:
At least one

chain is honest

Other one has at
most a c fraction

of the mining
power

Ex: c=1/3

24

Flyclient Strawman 1

Give me k
blocks:

7,13,210…

25

Flyclient Strawman 1: sample constant # of blocks

Sample k blocks + Merkle inclusion proof for each

26

Honest chain

Malicious chain (only 1/3 of the blocks have a PoW)

Head 1

Head 2

Flyclient Strawman 1: sample constant # of blocks

27

Honest chain

Malicious chain (only 1/3 of the blocks have a PoW)

Head 1

Head 2

Flyclient Strawman 1: sample constant # of blocks

28

Honest chain

Malicious chain (only 1/3 of the blocks have a PoW)

Head 1

Head 2

Flyclient Strawman 1: sample constant # of blocks

29

Honest chain

Malicious chain (only 1/3 of the blocks have a PoW)

Head 1

Head 2

Flyclient Strawman 1 problem: Forking

30

Honest chain

M
al

ic
io

us
 Fo

rk

Head 1

Head 2

Flyclient idea: Find Fork Point

31

Honest chain

M
al

ic
io

us
 Fo

rk

Head 1

Head 2

Knowing this point suffices

︸
Sample blocks after fork

Flyclient Strawman 2: Interactive Binary Search

32

Honest chain

M
al

ic
io

us
 Fo

rk

Head 1

Head 2

Binary search to
find fork point

Log(n) messages

Flyclient Strawman 2: Interactive Binary Search

33

Honest chain

M
al

ic
io

us
 Fo

rk

Head 1

Head 2

Binary search to
find fork point

Log(n) messages

Works but two provers may
not want to interact

Flyclient: Idea bound forking point

34

Honest chain
Head 1

Head 2

Flyclient: Idea bound forking point

35

Honest chain
Head 1

Head 2

Flyclient: Idea bound forking point

36

Honest chain
Head 1

Head 2
Step 3: Repeat

Flyclient: Idea bound forking point

37

Honest chain
Head 1

Head 2
Step 3: Repeat

Flyclient: Idea bound forking point

38

Honest chain
Head 1

Head 2
Step 4: Check final L blocks (to prevent short forks)

Flyclient Analysis

• In each interval check k blocks, k independent of chain length n

• k dependent on attacker strength

• Check log(n) intervalls

• For each block do log(n) merkle inclusion proof

• O(log(n)^2) overall

• For n=1000000->

39

Non Interactive Flyclient

40

Thanks

bbuenz.github.io

BUENZ@CS.STANFORD.EDU

