Stanford

University

BNUS VISA

National University

of Singapore ReSea rCh

FLYCLIENT

SUPER LIGHT CLIENT FOR CRYPTOCURRENCIES

Loi Luu, Benedikt Bunz, Mahdi Zamani

Stanford University

Recall: Bitcoin blockchain format
Hash chain of blocks

(o o o e e e M e M e M M M M M M M M M M M M M M M e M M M M M M M e M M M e M M M M M M M e M e M e M e e e ey

| | ' I ! :
: I prev: H() I prev: H() prev: H() :
| trans: H() trans: H() trans: H() |

; H(p) H()) i
Hash tree (Merkle tree) i Y Y i
of transactions in each ! H(,) H(,) HO) HOQ i
block : / l l \ :

i transaction transaction transaction transaction i

Stanford University

Validity of a blockchain
Hash chain of blocks

(o o o e e e M e M e M M M M M M M M M M M M M M M e M M M M M M M e M M M e M M M M M M M e M e M e M e e e ey

|] 1] :
: I prev: H() I prev: H() I prev: H() :
| trans: H() ’ trans: H() trans: H() |
Transactions arevalidi H() H() i
Merkle tree correct v :

! Y Y |

E H(/) H(l) H (|) H (\L i

: transaction transaction transaction transaction :

Stanford University

3. Validity of a block header

: prev: H() : : prev: H() : :
| | | | |
c || mrkl_root: H() ! 5 || mrkl_root: H() ! 7 mrkl_root: H() :
: nonce: 0x7a83 : : nonce: O0xf77e. .. : : nonce: Oxf77e. .. :
| | | | | |
: hash: 0x0000 ! : | : hash: 0x0000. .. |

=00000000000000001FB89300

\ J
|

70+ leading zeroes required... v

Stanford University

Two valid blockchains?
This is the
blockchain

No this is the
blockchain

Stanford University

Longest chain rule

Take the longest chain!
Harder to produce.

Stanford University

Proof of work conjecture

* Honest mining is a dominant equilibrium strategy
* The majority of miners act rational

* Implies that longest chain follows the rules of the network

» Sleeping beauty property: You can always distinguish honest and honest
chains after being offline

» Does not (necessarily) hold for proof of stake

» As long as one of the nodes you are connected to is honest you will find the
best chain

Stanford University

Blockchain size: A growing problem

DDDDDDD

How am | going to
store 150 GB

0000000

Stanford University

Simple Payment Verifying Client (Satoshi 2008)

(o o o e e e M e M e M M M M M M M M M M M M M M M e M M M M M M M e M M M e M M M M M M M e M e M e M e e e ey

Just store the
block headers

transaction transaction

Stanford University

Verify block headers

: prev: H() : : prev: H() : :
| | | | |
c || mrkl_root: H() ! 5 || mrkl_root: H() ! 7 mrkl_root: H() :
: nonce: 0x7a83 : : nonce: O0xf77e. .. : : nonce: Oxf77e. .. :
| | | | | |
: hash: 0x0000 ! : | : hash: 0x0000. .. |

=00000000000000001FB89300

\ J
|

70+ leading zeroes required... v

Stanford University

Use the longest chainr

Stanford University

Can’t verify all transactions (but that’s ok)

(o o o e e e M e M e M M M M M M M M M M M M M M M e M M M M M M M e M M M e M M M M M M M e M e M e M e e e ey

:] 1] :
: I prev: H() I prev: H() I prev: H() :
: trans: H() trans: H() trans: H() |
Assumption: ! H(\) H(,) |
Longest chain is : , |
produced honestly | v — |

5 }(/ H<|l> H(l,) H(o\\ 5

i transaction | transaction | transaction | transaction ? i

Stanford University

Can verify specific transactions (with help)

(o o o e e e M e M e M M M M M M M M M M M M M M M e M M M M M M M e M M M e M M M M M M M e M e M e M e e e ey

transaction

Stanford University

Can verify specific transactions (with help)

(o o o e e e M e M e M M M M M M M M M M M M M M M e M M M M M M M e M M M e M M M M M M M e M e M e M e e e ey

:] 1] :
: é_l prev: H() I prev: H() (_l prev: H() :
i trans: H() 7 trans: H(') trans H() i
i Y \ Merkle proof n i
: H(/) Ty + log, (# trans.) | |

Stanford University

SPV Properties and Problems

Can determine the longest chain
Can verify transaction inclusion
Does not grow with #transactions
80 bytes * #blocks (Bitcoin)

508 bytes * #blocks (Ethereum)

Sufficient for sidechains and swaps

Can't verify all transactions

Grows with #blocks

Less block time-> larger SPV client
40 MB in Bitcoin

2.2 GB in Ethereum

Especially bad for multi-chain clients

Stanford University

Sublinear SPV-Clients: SNARKS

* SNARK or CS-Proof/CIP/STARK (Micali 91, Ben-Sasson et al. 17)
« Constant size non-interactive proof that chain has length X
« Circuit verifies full blockchain
* Not practical for prover

« SNARKS closer to being practical but trusted setup

Stanford University

Sublinear SPV-Clients: NiPoPoWs

« Kyriasis, Miller, Zindros 17
» Based on Kiayias, Lamprou, Stouka 16 and Back et al. 14

 Insight: If | want to find x such that H(x) has n Os then | will find 2 x’ such that
H(x') has n-1 0s, 4 x” such that H(x”) has n-2 Os ...

» Best quality proof of work indicates quality of whole chain
» Use a skiplist to point to proofs with less proofs of work

* O(log(n)*log(log(n))) proof size

Stanford University

NiPoPoW bribery attack

« High quality blocks do not give extra reward

« But they are important for NiPoPows'

» Bribe henest rational miners to throw away super high quality blocks
« Main chain “looks” worse which makes fooling SPV client easier

» Does not violate NiPoPow’s security proof because honest mining and not
rational mining is assumed

* Motivates search for different NiPoPows

Stanford University

Merkle Mountain Ranges (Todd 16)

Root 1 Root 3

Root 0

Append L2 Append L3
- -
L2 LO L1 L2
LO L1

LO L1

Log(n) inclusion proofs

Log(n) updates

nth tree commits to kth tree k<n
Log(n) difference proofs

Stanford University

Flyclient: A different approach to super-light clients

l
(_J prev: H()

prev: H()

trans: H()

trans: H()

prev: H()

trans: H()

Stanford University

Flyclient: A different approach to super-light clients

root: H()

Store just
the head

trans: H()

trans: H()

root: H(“)

trans: H()

Stanford University

Flyclient: A different approach to super-light clients

Store just

the head

Merkle Tree

root: H() root: H()
trans: H() trans: H()

Stanford University

Verifying Transaction | yarkie proof

_______________ f/ log (# blocks.) \

root: H() root: H(") i
trans: H(,) trans: H() |
Chain head :
H) o T2y, i
‘ \ Merkle proof r | |
H(,) ?T1+ log, (# trans.) | |
i ;

Stanford University

Flyclient: Two heads?
Thisis the -
7 head v]
Assumption:

® At least one
chain is honest

Other one has at
most a c fraction
of the mining
power
Ex: c=1/3

No this is the
head

Stanford University

Flyclient Strawman 1 m

Give me k
blocks:

7,13,210...

Stanford University

Flyclient Strawman 1: sample constant # of blocks

Honest chain

IS J

Sample k blocks + Merkle inclusion proof for each

Head 1

Malicious chain (only 1/3 of the blocks have a PoW)

-y 5

Stanford University

Flyclient Strawman 1: sample constant # of blocks

Honest chain

I T

k

Head 1

k samplesand % mining power >Advers. wins with %
k = 81 > P[Cheating] < 27128

Malicious chain (only 1/3 of the blocks have a PoW)

-y 5

Stanford University

Flyclient Strawman 1: sample constant # of blocks

Honest chain

IS T

k

Head 1

k samplesand % mining power >Advers. wins with %
k = 81 - P[Cheating] < 27128

Malicious chain (only 1/3 of the blocks have a PoW)

-y 5

Stanford University

Flyclient Strawman 1: sample constant # of blocks

Honest chain

\JJ T

k

Head 1

k samplesand % mining power >Advers. wins with %
k = 81 - P[Cheating] < 27128

Malicious chain (only 1/3 of the blocks have a PoW)

Stanford University

Flyclient Strawman 1 problem: Forking

Honest chain

Stanford University

Flyclient idea: Find Fork Point

Honest chain
Head 1 B
/

*—
7 N
S
'S
,\\G Knowing this point suffices
ps
Head 2 I ;

/

~

Sample blocks after fork

Stanford University

Flyclient Strawman 2: Interactive Binary Search

Honest chain

Binary search to
find fork point

Log(n) messages

Stanford University

Flyclient Strawman 2: Interactive Binary Search

Honest chain

Binary search to
find fork point
Log(n) messages

Works but two provers may
not want to interact

Stanford University

Flyclient: Idea bound forking point

Honest chain
Head 1 &y —

-
- -
- -

Step 1: Sample enough blocks
Such that at least% of them were created

Stanford University

Flyclient: Idea bound forking point

Honest chain

Head 1l & -

‘/
‘/
‘/
‘/
‘/
‘/
‘/

- %ofthe chain

Step 2: Calculate min fork point

% honst blocks + % blocks at rate % = % of total blocks

Stanford University

Flyclient: Idea bound forking point

Honest chain

Head 1 B

4 3 .
s Zofthe chain

Step 3: Repeat

Stanford University

Flyclient: Idea bound forking point

Honest chain

Head 1 B
;
,
,
’ 7 :
;. gofthechain
4

Step 3: Repeat

Stanford University

Flyclient: Idea bound forking point

Honest chain

Head 1 Rupmr

Step 4: Check final L blocks (to prevent short forks)

Stanford University

Flyclient Analysis

In each interval check k blocks, k independent of chain length n
* k dependent on attacker strength

* Check log(n) intervalls

* For each block do log(n) merkle inclusion proof

* O(log(n)*2) overall

e For n=1000000->

Stanford University

Non Interactive Flyclient

Verifier just requests random blocks

Get randomness from hash function and chain head (Bonneau et al. 15)

Also known as the Fiat-Shamir heuristic

27128 soundness not needed because new hash -> new head -> new PoW

Create proof once and reuse

Simulation: <3 MB for Ethereum instead of 2.2GB

Stanford University

Thanks

BUENZ@CS.STANFORD. EDU

bbuenz.github.io

Stanford University

