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Recall: Bitcoin blockchain format
Hash chain of blocks
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Validity of a blockchain
Hash chain of blocks
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3. Validity of a block header

: prev: H( ) : : prev: H( ) : :
| | | | |
c || mrkl_root: H( ) ! 5 || mrkl_root: H( ) ! 7 mrkl_root: H( ) :
: nonce: 0x7a83 : : nonce: O0xf77e. .. : : nonce: Oxf77e. .. :
| | | | | |
: hash: 0x0000 ! : | : hash: 0x0000. .. |

=00000000000000001FB893000000000000000000000000000000000000000000
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70+ leading zeroes required... v
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Two valid blockchains?
This is the
blockchain

No this is the
blockchain
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Longest chain rule

Take the longest chain!
Harder to produce.
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Proof of work conjecture

* Honest mining is a dominant equilibrium strategy
* The majority of miners act rational

* Implies that longest chain follows the rules of the network

» Sleeping beauty property: You can always distinguish honest and honest
chains after being offline

» Does not (necessarily) hold for proof of stake

» As long as one of the nodes you are connected to is honest you will find the
best chain
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Blockchain size: A growing problem

DDDDDDD

How am | going to
store 150 GB

0000000
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Simple Payment Verifying Client (Satoshi 2008)
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Just store the
block headers

transaction transaction
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Verify block headers

: prev: H( ) : : prev: H( ) : :
| | | | |
c || mrkl_root: H( ) ! 5 || mrkl_root: H( ) ! 7 mrkl_root: H( ) :
: nonce: 0x7a83 : : nonce: O0xf77e. .. : : nonce: Oxf77e. .. :
| | | | | |
: hash: 0x0000 ! : | : hash: 0x0000. .. |

=00000000000000001FB893000000000000000000000000000000000000000000
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70+ leading zeroes required... v
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Use the longest chainr
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Can’t verify all transactions (but that’s ok)
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Can verify specific transactions (with help)
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Can verify specific transactions (with help)
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SPV Properties and Problems

Can determine the longest chain
Can verify transaction inclusion
Does not grow with #transactions
80 bytes * #blocks (Bitcoin)

508 bytes * #blocks (Ethereum)

Sufficient for sidechains and swaps

Can't verify all transactions

Grows with #blocks

Less block time-> larger SPV client
40 MB in Bitcoin

2.2 GB in Ethereum

Especially bad for multi-chain clients
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Sublinear SPV-Clients: SNARKS

* SNARK or CS-Proof/CIP/STARK (Micali 91, Ben-Sasson et al. 17)
« Constant size non-interactive proof that chain has length X
« Circuit verifies full blockchain
* Not practical for prover

« SNARKS closer to being practical but trusted setup
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Sublinear SPV-Clients: NiPoPoWs

« Kyriasis, Miller, Zindros 17
» Based on Kiayias, Lamprou, Stouka 16 and Back et al. 14

 Insight: If | want to find x such that H(x) has n Os then | will find 2 x’ such that
H(x') has n-1 0s, 4 x” such that H(x”) has n-2 Os ...

» Best quality proof of work indicates quality of whole chain
» Use a skiplist to point to proofs with less proofs of work

* O(log(n)*log(log(n))) proof size
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NiPoPoW bribery attack

« High quality blocks do not give extra reward

« But they are important for NiPoPows'

» Bribe henest rational miners to throw away super high quality blocks
« Main chain “looks” worse which makes fooling SPV client easier

» Does not violate NiPoPow’s security proof because honest mining and not
rational mining is assumed

* Motivates search for different NiPoPows
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Merkle Mountain Ranges (Todd 16)

Root 1 Root 3

Root 0

Append L2 Append L3
- -
L2 LO L1 L2
LO L1

LO L1

Log(n) inclusion proofs

Log(n) updates

nth tree commits to kth tree k<n
Log(n) difference proofs

Stanford University



Flyclient: A different approach to super-light clients

l
(_J prev: H( )

prev: H( )

trans: H( )

trans: H( )

prev: H( )

trans: H( )
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Flyclient: A different approach to super-light clients

root: H( )

Store just
the head

trans: H( )

trans: H( )

root: H(“)

trans: H( )
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Flyclient: A different approach to super-light clients

Store just

the head

Merkle Tree

root: H( ) root: H( )
trans: H( ) trans: H( )
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Verifying Transaction | yarkie proof

_______________ f/ log (# blocks.) \

root: H( ) root: H(") i
trans: H(, ) trans: H( ) |
Chain head :
H) o T2y, i
‘ \ Merkle proof r | |
H(, ) ?T1+ log, (# trans.) | |
i ;
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Flyclient: Two heads?
Thisis the -
7 head v ]
Assumption:

® At least one
chain is honest

Other one has at
most a c fraction
of the mining
power
Ex: c=1/3

No this is the
head
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Flyclient Strawman 1 m

Give me k
blocks:

7,13,210...
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Flyclient Strawman 1: sample constant # of blocks

Honest chain

IS J

Sample k blocks + Merkle inclusion proof for each

Head 1

Malicious chain (only 1/3 of the blocks have a PoW)

-y 5
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Flyclient Strawman 1: sample constant # of blocks

Honest chain

I T

k

Head 1

k samplesand % mining power >Advers. wins with %
k = 81 > P[Cheating] < 27128

Malicious chain (only 1/3 of the blocks have a PoW)

-y 5
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Flyclient Strawman 1: sample constant # of blocks

Honest chain

IS T

k

Head 1

k samplesand % mining power >Advers. wins with %
k = 81 - P[Cheating] < 27128

Malicious chain (only 1/3 of the blocks have a PoW)

-y 5
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Flyclient Strawman 1: sample constant # of blocks

Honest chain

\JJ T

k

Head 1

k samplesand % mining power >Advers. wins with %
k = 81 - P[Cheating] < 27128

Malicious chain (only 1/3 of the blocks have a PoW)
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Flyclient Strawman 1 problem: Forking

Honest chain
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Flyclient idea: Find Fork Point

Honest chain
Head 1 B
/

*—
7 N
S
'S
,\\G Knowing this point suffices
ps
Head 2 I ;

/

~

Sample blocks after fork
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Flyclient Strawman 2: Interactive Binary Search

Honest chain

Binary search to
find fork point

Log(n) messages
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Flyclient Strawman 2: Interactive Binary Search

Honest chain

Binary search to
find fork point
Log(n) messages

Works but two provers may
not want to interact
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Flyclient: Idea bound forking point

Honest chain
Head 1 &y —

-
- -
- -

Step 1: Sample enough blocks
Such that at least% of them were created
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Flyclient: Idea bound forking point

Honest chain

Head 1l & -

‘/
‘/
‘/
‘/
‘/
‘/
‘/

- %ofthe chain

Step 2: Calculate min fork point

% honst blocks + % blocks at rate % = % of total blocks

Stanford University



Flyclient: Idea bound forking point

Honest chain

Head 1 B

4 3 .
s Zofthe chain

Step 3: Repeat
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Flyclient: Idea bound forking point

Honest chain

Head 1 B
;
,
,
’ 7 :
;. gofthechain
4

Step 3: Repeat
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Flyclient: Idea bound forking point

Honest chain

Head 1 Rupmr

Step 4: Check final L blocks (to prevent short forks)
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Flyclient Analysis

In each interval check k blocks, k independent of chain length n
* k dependent on attacker strength

* Check log(n) intervalls

* For each block do log(n) merkle inclusion proof

* O(log(n)*2) overall

e For n=1000000->
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Non Interactive Flyclient

Verifier just requests random blocks

Get randomness from hash function and chain head (Bonneau et al. 15)

Also known as the Fiat-Shamir heuristic

27128 soundness not needed because new hash -> new head -> new PoW

Create proof once and reuse

Simulation: <3 MB for Ethereum instead of 2.2GB
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Thanks

BUENZ@CS.STANFORD. EDU

bbuenz.github.io
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