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Motivation

Transaction volume
was growmﬁ;
exponentia

Hitting the "1 MB
block size limit” put a
lid on growth

Fees have increased
and confirmation
times have become
unreliable

We want to raise the
limit but there are
scaling concerns
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Scaling concerns

USERS NETWORK NODES




Scaling concerns

USERS NETWORK NODES
- Simplified payment verification (SPV) - Network nodes must validate every transaction
technology is highly scalable - 4 biniormusersx 1 transaction per day =
- Users can: 50,000 tx/sec
+ Be there own banks - “Ivetwork nodes are needed for:
+ Verify their own transactions + Mining new blocks
+ Send payments to any other user + Serving Merkle-branch proofs to SPV wallets
- 4 billion people already have access to + Archiving historical blocks
technology to facilitate this (“dumb phone” + Some businesses (e.g., payment processing)
+ SMS text message) + Research/development

We wanted to measure the maximum sustained throughput of a
global network of bitcoin nodes to see how close we are to achieving
this, and then to identify bottlenecks.
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Gigab\ock Testnet (October 2017 — 18 nodes)
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Bottleneck #1: 100 tx/s
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What caused the bottleneck?
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|t wasn't the CPU

e 25% of a 4-core machine at 100

tx/s

33

CPU load (%)
N N w
o (Ug] C)

=
v

4—core CPU

Bottleneck
zone

" ¢
o
1 . .
1.'
*y

8—core CPU

16 —core CPU

150
Generation rate (tx/s)

200



What caused the bottleneck?

Bottleneck

* It wasn’t the CPU 35} N,y
« 25% of a 4-core machine at 100 151 i
tx/s } ! . '
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Ramp tests with bottleneck removed
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Ramp tests with bottleneck removed
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Ramp tests with bottleneck removed
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Xthin block
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Xthin block
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Xthin block
propagation
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Regressions, interpolations & extrapolations

Regression 100 tx/sec 2000 tx/sec 50,000 tx/sec
coefficient (mempool (Visa level) (global adoption)
bottleneck)
CPU 0.01 cores / (tx/sec) 1 core 20 cores 500 cores
Network | 0.03 Mbps / (tx/sec) 3 Mbps 60 Mbps 1.5 Gbps
Memory
Disk 10O




Regressions, interpolations & extrapolations

Regression 100 tx/sec 2000 tx/sec 50,000 tx/sec
coefficient (mempool (Visa level) (global adoption)
bottleneck)
CPU 0.01 cores / (tx/sec) 1 core 20 cores 500 cores
Network | 0.03 Mbps / (tx/sec) 3 Mbps 60 Mbps 1.5 Gbps
Memory
TBD in Experiment #2: UTXO stress test

Disk 10
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Reduce use of cs_main

Transition to fine-grained locking

Use shared mutexes

Shared mutexes allow simultaneous

I—O C kl n g readers and an exclusive writer.
St ra te g y Most boost and std containers have the

same access semantics.

Apply to all major state:
mempool,
UTXO set,
chain state,
orphan pool,
recent rejects,
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Optimizations

Fast Bloom Filter

Validate transactions

Stop block
AlreadyHave() locks and onees re-serialization just to
touches everything determine size
Fast Coin Selection NA2 txn processing in block Reduce cs_main scope

(ConnectTip->SyncWithWallets) (orphan list, versionbitscache,

recentRejects, AlreadyHave(), chainActive
tip)

Move locking out of tight loops std::atomic
Do not format logs that won't be (chainActive. Tip()
issued Use shared locks
(mempool, orphan cache, recent
Sharded request manager remove extraneous Message pr_ocessing rejects, utxo)
sha256 hashing chunking |
(tx trickle, save block and tx id) Don't hold locks across disk

accesses and logging

Scaling Fixes

Stop Copying Blocks By Fix hang when block is
Value larger than max block file Increase max buffer
size sizes

UTXO "Coin" returned by

reference, lock released Do not rerequest a block
if it is being processed



Fast Bloom Filter

Is it likely that I've seen this data before?

Bloom Filter Fast Filter

Hn = Execute N hash functions over data

INSERT: Set every bit Hn Use power of 2 filter buffer size for fast math

INSERT: Set every bit Hn
CHECK: If every bit Hn is set return TRUE

CHECK: If every bit Hn is set return TRUE

Observations: Note:

Hashing is extremely slow Each node chooses random "arbitrary subsets of
the TX hash" so attackers cannot reliably

We can't get more random than the SHA256 fabricate collisions

cryptographic hash algorithm used to create
transaction and block id's

Why are we hashing the hash?



Thank youl!

Funding provided by

Obitcoin 7=nChain

Code at https://github.com/gandrewstone/BitcoinUnlimited
"giga_perf" branch



The Next 25 Years for Bitcoin: A Payment Network for Planet Earth

12.5 BTC 6.25 BTC 3.12 BTC 1.56 BTC 0.78 BTC 0.39 BTC

130,000 TPS (130 Mbps)

Data from blockchain.info - _ - |
Paypal and Visa estimates from Scalability Wiki 2037: Glohal adoption

550 bytels/TX and|10-min |blocktimes assumed 1 billi
‘ . ~1 billion trans / da :
Prepared by Peter R, -bitcointalicorg / day 3000 TPS (13 Mbps)

2032: Visa-level transactions
(~2000-TPS)
2024 Paypal=Jlevel-transaction-processing
| (~115[TPS)

300 TPS (1.3 Mbps)

30 TPS (130 kbps)

#2020 Fee priessure builds as the network
once again approaches the blocksize limit, - 3 TPS (13 kbps)
providing impetus for off=chain solutions Blockchain size
(e-g-; Lightning Networks). Growth slows, _
now|doubling only every second year | : 18 TPM (1.3 kbps)
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2016: Two weeks after 75% of the hashing power

agrees, the blocksize-Jlimit indrease is activated
P . | N ——a 2 TPM (130 bps)

Today: The:average blocksize-is rapidly approachinig
thejanti—-spam limit, roughly doubling in size each year

Approximate transaction and bit rates

_FAILURE — 11 TPH (13 bps)

2010:-1-MB-blocksize limit-introduced as anti=spam measure
by Git commits-a30b56e (July 14)and 8c9479¢c (Sept 6)

1 TPH (smoke signals)
2010 2012 2014 2016 2018 2020 2022 2024 2026 2028 2030 2032 2034 2036 2038 2040
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