Measuring maximum sustained transaction
throughput on a global network of nodes

4 November 2017

Andrea Suisani, Andrew Clifford," Andrew Stone,' Erik Beijnoff,’
Peter Rizun," Peter Tschipper,' Alexandra Fedorova,? Chen Feng,?
Victoria Lemieux,? Stefan Matthews?®

" Bitcoin Unlimited, 2 University of British Columbia, *nChain

Motivation

- Transac’uqn volume LR
was growmﬁ;
exponentially
- Hitting the "1 MB & 100,000
block size limit” puta £
id on growth =
N
» 10,000
E
o
1,000

-

2009 2010 2011 2012 2013 2014 2015 2016 2017
Year

Motivation

Transaction volume
was growmﬁ;
exponentia

Hitting the "1 MB
block size limit” put a
lid on growth

Fees have increased
and confirmation
times have become
unreliable

We want to raise the
limit but there are
scaling concerns

Block size (bytes)

1,000,000 | —
100,000
2017
4 ®
@ ” 4 Ny
TPANSACTION FEES CONFIRMATION TIMES
1.000 $0.10 ~10 min
2 TRANSACTION FEES CONFIRMATION TIMES
2009 2010 2011 2012 2013 2014 2015 2016 2017

Year

Scaling concerns

USERS NETWORK NODES

Scaling concerns

USERS NETWORK NODES
- Simplified payment verification (SPV) - Network nodes must validate every transaction
technology is highly scalable - 4 biniormusersx 1 transaction per day =
- Users can: 50,000 tx/sec
+ Be there own banks - “Ivetwork nodes are needed for:
+ Verify their own transactions + Mining new blocks
+ Send payments to any other user + Serving Merkle-branch proofs to SPV wallets
- 4 billion people already have access to + Archiving historical blocks
technology to facilitate this (“dumb phone” + Some businesses (e.g., payment processing)
+ SMS text message) + Research/development

We wanted to measure the maximum sustained throughput of a
global network of bitcoin nodes to see how close we are to achieving
this, and then to identify bottlenecks.

Gigab\ock Testnet (October 2017 — 18 nodes)

Gigab\ock Testnet (October 2017 — 18 nodes)

Reference spec ™
T A — \

4-core CPU 30 Mbps % ‘_

[s]»
0000 @ 4-6 miners 12 generators

16 GB RAM SSD storage

Ramp tests

500

o O uwn

o
O N —
—

(s/x1) indybnouay |

10

Time (hr)

Target generation rate

Ramp tests

500

1________.»

o O S wn
05 _I_
__I_

(s/x1) indybnouay |

10

Time (hr)

Ramp tests

500

=
vl O
o O

-
o

Throughput (tx/s)

vl

—— Measured generation rate

4
Time (hr)

10

Bottleneck #1: 100 tx/s

Ra M p te StS Mempool acceptance

cannot keep up

500] T N
| 7 CN
- Target generation rate - - \
—— Measured generation rate \I
= 100¢
‘£~ - | = Mempool acceptance rate /
£ 50; /
*é_ - Mempool acceptance /
< keeps up
o
5 10¢
= 5
1
-2 0 2 4 6 8 10

Time (hr)

e — — - T S ST T S| — —— — |

Ramp tests

%
\
N
%
h ¢

b \

a %

= N

) \

W)

| = k-

m /

Q. 1\

m \

@) h

a ./...

0 N

O X

Q. .

=

(<))

=
o o O O uwn —
o O W —
LN —

(s/x1) indybnouay |

10

Time (hr)

What caused the bottleneck?

35|

30;

N
(¥

CPU load (%)
[N
Vi o

(-
o

wi

50 100 150 200
Generation rate (tx/s)

o
D

What caused the bottleneck?

|t wasn't the CPU 35/

e 25% of a 4-core machine at 100

tx/s 30, | &

4—core CPU ’

N
v

=
(Vg

CPU load (%)
N
o

(-
o

> I ¥y |

50 100 150 200
Generation rate (tx/s)

What caused the bottleneck?

|t wasn't the CPU

e 25% of a 4-core machine at 100
tx/s

CPU load (%)

35

30;

N
(¥

N
o

=t
v

=
o

(o I ¥ |

4—core CPU

Bottleneck
zohe

b

50

100

150

Generation rate (tx/s)

200

What caused the bottleneck?

|t wasn't the CPU

e 25% of a 4-core machine at 100

tx/s

33

CPU load (%)
N N w
o (Ug] C)

=
v

4—core CPU

Bottleneck
zone

" ¢
o
1 . .
1.'
*y

8—core CPU

16 —core CPU

150
Generation rate (tx/s)

200

What caused the bottleneck?

Bottleneck

* It wasn’t the CPU 35} N,y
« 25% of a 4-core machine at 100 151 i
tx/s } ! . '
—core
* |t was the single-threaded $25
mempool acceptance code 2 50
o \ _
path é 8—core CPU |
* Andrew Stone parallelized S 1] 2

mempool acceptance 10k
* Now can achieve over 1,000

tx/sec sustained 51 i P
* Bursts over 10,000 tx/s on ; | | == |
strongest nodes 0 50 100 150 200

Generation rate (tx/s)

Ramp tests with bottleneck removed

1000+ T
C S : P
500" Target generation rate ‘ ,f,»
f’/
@ -7
~— "lf
X 100: ' 7
5 50 T
g
g =
o -7
= 10 7
c : -,
- o ,,*’
i 7
- ,}
/’/
1 _________ ”
—2 0 2 4 6 8 10

Time (hr)

Ramp tests with bottleneck removed

1000
500

- Mempool acceptance rate ‘
E 100;
S 50}
o _
i
m -
=
° 10}
= C
- 5

1

D 0 2 4 6 8 10

Time (hr)

Ramp tests with bottleneck removed

Throughput (tx/s)

1000,
500]

100;
50

10;

Target generation rate
Mempool acceptance rate

- Blockchain commit rate

Time (hr)

10

Xthin block
propagation

1000}

—
= -
o o

Propagation time, r (S)
. -

0.1;
0.1MB 1MB 10MB 100MB 1GB
Block size, Q

Xthin block

propagation

: 1000:
Linear model: 5

Propagation time Block size

X X
T =T+ z(Q

o

Empty-block Propagation
time impedance

10;

Propagation time, r (S)

Least-squares best fit:

I & ? ® @ L
! : |kl
100 ‘:’ f z v ’ ?. .

0.1 =
T = 0.2s - I I
0.I1MB 1MB 10MB 100MB

7z = 0.6 S/MB Block size, Q

1GB

Xthin block
propagation

Linear model:

wn

Propagation time Block size =
\ N
T=To+2zQ E

P -

Q

Empty-block !’ropagation g
time impedance <

E

Least-squares best fit: e

To = 0.2 s
z =0.6s/MB

Bottleneck: propagation time
commensurate with 10 min

block time ihvares

compression

1000 10 minute block time

1.0

100;

10;

0.8

0.6

0.4

02

0.1MB 1MB 10MB 100MB 1GB

Block size, Q Side note: propagation time does

not depend strongly on network BW

Regressions, interpolations & extrapolations

Regression 100 tx/sec 2000 tx/sec 50,000 tx/sec
coefficient (mempool (Visa level) (global adoption)
bottleneck)
CPU 0.01 cores / (tx/sec) 1 core 20 cores 500 cores
Network | 0.03 Mbps / (tx/sec) 3 Mbps 60 Mbps 1.5 Gbps
Memory
Disk 10O

Regressions, interpolations & extrapolations

Regression 100 tx/sec 2000 tx/sec 50,000 tx/sec
coefficient (mempool (Visa level) (global adoption)
bottleneck)
CPU 0.01 cores / (tx/sec) 1 core 20 cores 500 cores
Network | 0.03 Mbps / (tx/sec) 3 Mbps 60 Mbps 1.5 Gbps
Memory
TBD in Experiment #2: UTXO stress test

Disk 10

Transaction
Processing
Architecture

Original

Socket Receipt Thread

Message Handling
Thread

\

Parallel Capable

Socket Receipt

Input conflicts !

Try Later Queue | ‘ ‘ H 'l:

= il

Orphan TX

[I]]] =>

1 Thread

(410 8
Message
Handling
Threads

[Incoming
Transaction
| Queue

(410 8
Transaction
Validation
Threads

 Mempool
Commit
Queue

1 Mempool
Commit
Thread

Reduce use of cs_main

Transition to fine-grained locking

Use shared mutexes

Shared mutexes allow simultaneous

I—O C kl n g readers and an exclusive writer.
St ra te g y Most boost and std containers have the

same access semantics.

Apply to all major state:
mempool,
UTXO set,
chain state,
orphan pool,
recent rejects,

Simultaneity

O
O
O

Socket
Receipt

Message
Handling

Transaction
Validation

Mempool
Commit

Block
Processing

(TBD)

Optimizations

Fast Bloom Filter

Validate transactions

Stop block
AlreadyHave() locks and onees re-serialization just to
touches everything determine size
Fast Coin Selection NA2 txn processing in block Reduce cs_main scope

(ConnectTip->SyncWithWallets) (orphan list, versionbitscache,

recentRejects, AlreadyHave(), chainActive
tip)

Move locking out of tight loops std::atomic
Do not format logs that won't be (chainActive. Tip()
issued Use shared locks
(mempool, orphan cache, recent
Sharded request manager remove extraneous Message pr_ocessing rejects, utxo)
sha256 hashing chunking |
(tx trickle, save block and tx id) Don't hold locks across disk

accesses and logging

Scaling Fixes

Stop Copying Blocks By Fix hang when block is
Value larger than max block file Increase max buffer
size sizes

UTXO "Coin" returned by

reference, lock released Do not rerequest a block
if it is being processed

Fast Bloom Filter

Is it likely that I've seen this data before?

Bloom Filter Fast Filter

Hn = Execute N hash functions over data

INSERT: Set every bit Hn Use power of 2 filter buffer size for fast math

INSERT: Set every bit Hn
CHECK: If every bit Hn is set return TRUE

CHECK: If every bit Hn is set return TRUE

Observations: Note:

Hashing is extremely slow Each node chooses random "arbitrary subsets of
the TX hash" so attackers cannot reliably

We can't get more random than the SHA256 fabricate collisions

cryptographic hash algorithm used to create
transaction and block id's

Why are we hashing the hash?

Thank youl!

Funding provided by

Obitcoin 7=nChain

Code at https://github.com/gandrewstone/BitcoinUnlimited
"giga_perf" branch

The Next 25 Years for Bitcoin: A Payment Network for Planet Earth

12.5 BTC 6.25 BTC 3.12 BTC 1.56 BTC 0.78 BTC 0.39 BTC

130,000 TPS (130 Mbps)

Data from blockchain.info - _ - |
Paypal and Visa estimates from Scalability Wiki 2037: Glohal adoption

550 bytels/TX and|10-min |blocktimes assumed 1 billi
‘ . ~1 billion trans / da :
Prepared by Peter R, -bitcointalicorg / day 3000 TPS (13 Mbps)

2032: Visa-level transactions
(~2000-TPS)
2024 Paypal=Jlevel-transaction-processing
| (~115[TPS)

300 TPS (1.3 Mbps)

30 TPS (130 kbps)

#2020 Fee priessure builds as the network
once again approaches the blocksize limit, - 3 TPS (13 kbps)
providing impetus for off=chain solutions Blockchain size
(e-g-; Lightning Networks). Growth slows, _
now|doubling only every second year | : 18 TPM (1.3 kbps)

U
=
v
~
U
o
o

2016: Two weeks after 75% of the hashing power

agrees, the blocksize-Jlimit indrease is activated
P . | N ——a 2 TPM (130 bps)

Today: The:average blocksize-is rapidly approachinig
thejanti—-spam limit, roughly doubling in size each year

Approximate transaction and bit rates

_FAILURE — 11 TPH (13 bps)

2010:-1-MB-blocksize limit-introduced as anti=spam measure
by Git commits-a30b56e (July 14)and 8c9479¢c (Sept 6)

1 TPH (smoke signals)
2010 2012 2014 2016 2018 2020 2022 2024 2026 2028 2030 2032 2034 2036 2038 2040

Year

