
Bitcoin Script 2.0 and
Strengthened Payment Channels

Johnson Lau, Bitcoin protocol developer
Olaoluwa Osuntokun, Co-founder Lightning Labs

Presented at Scaling Bitcoin 2017
Stanford, CA

November 4th 2017

A brief history of Bitcoin script evolution

Emergency bug fix (2009-2010)

● Skip signature check with OP_RETURN and malformed scriptSig
● Accidental consensus fork: OP_VER and OP_VERIF
● Potential DoS: CAT, SUBSTR, LEFT, RIGHT, INVERT, AND, OR, XOR, 2MUL,

2DIV, MUL, DIV, MOD, LSHIFT, RSHIFT

Fixed-size address for arbitrarily complex scripts (2012)

● Pay-to-script → Pay-to-hash-of-script
● BIP16 Pay-to-script-hash

A brief history of Bitcoin script evolution

Strict DER signature format (BIP66, 2015)

● Consensus bug due to inconsistencies in signature handling in OpenSSL

Lock-time and Relative Lock-time (2015-2016)

● OP_CHECKLOCKTIMEVERIFY (BIP65)
● OP_CHECKSEQUENCEVERIFY (BIP112)
● Priority resolution in smart contracts

Malleability fix (2016-2017)

● BIP141: Segregated witness

Shortcomings - Lack of upgrade mechanism

● Original solutions including OP_VER, OP_VERIF and OP_RETURN led to
critical consensus failure and were disabled

● OP_NOP1 to OP_NOP10 allowed new “pass-or-fail” type operations, but not
any stack-manipulating operations (push, move, remove)

● Not possible to redefine existing operations
● “Witness version” in Segregated Witness (BIP141) allows introduction of new

script system without modifying existing script functions

Shortcomings - Lack of string and bitwise operations

● Most string and bitwise operations were disabled in a rush in 2010:
○ OP_CAT, OP_SUBSTR, OP_LEFT, OP_RIGHT, OP_INVERT, OP_AND,

OP_OR, OP_XOR
● Unable to combine strings or examine part of a string
● Potential use:

○ Tree signatures with OP_CAT: O(logN) script size for very complicated multi-sig
○ Deterministic random number generation with OP_XOR: combining secret values from different

parties
○ Weak hash with OP_LEFT: to save witness space when 160-bit is not necessary

● Safely re-enabled in the Elements Project

Shortcomings - Limited numeric operations
● Disabled in 2010: OP_MUL, OP_2MUL, OP_DIV, OP_2DIV, OP_MOD,

OP_RSHIFT, OP_LSHIFT
● Range of value is limited and confused

○ CScriptNum are processed as int64 internally
○ Input: Up to 32-bit signed
○ Output: Potentially up to 64-bit signed

● Input size cannot cover the maximum amount of bitcoin supply
○ 21,000,000 * 108 = 250.899
○ Needs at least 51-bit unsigned or 52-bit signed

● Proposal
○ Expand the valid input range to 56-bit signed (7-byte)
○ Limit the maximum output size to 7-byte
○ Safely re-enable operations within the limited input and output range

Shortcomings - Cannot commit to additional scripts

● Functional (non-push) script operations in scriptSig has no practical use
○ Malleable by third parties, as not covered by the signature operations in scriptPubKey
○ For example, any <sig> <pubkey> OP_CHECKSIG pattern in scriptSig could be simply replaced

by a OP_1 or OP_0

● Potential use:
○ Delegation: inclusion of additional scripts without spending and re-creating UTXO. For example

“my son may spend this UTXO later, if it is not spent by me within 1 year”
○ Replay protection: with OP_PUSHBLOCKHASH (push the hash of a block of specified height to

stack), it makes sure a transaction is valid only in a specified blockchain fork

● Proposal: OP_CHECKSIG needs the ability to sign additional scripts which will
be executed

Shortcomings - Limited access to tx components

● OP_CHECK(MULTI)SIG(VERIFY) are the only operations that could examine
different components in a transaction, in 6 very restricted SIGHASH
combinations:
○ (SIGHASH_ALL or SIGHASH_SINGLE or SIGHASH_NONE) ± SIGHASH_ANYONECANPAY

● Advantage of SIGHASH design
○ Very compact: 1-byte to indicate which components to sign

● Disadvantage of SIGHASH design
○ Very inflexible: meaning of SIGHASH flags are set in stone once deployed
○ Complicated and error-prone design, e.g. O(N2) bug and SIGHASH_SINGLE bug

● Proposal: SIGHASHV2 with 0 to 2 bytes, covering transaction nVersion,
nLockTime, inputs (value, hash, nSequence), outputs (script, value), fees,
additional scripts. All components are individually optional.

Shortcomings - Limited access to tx components
● Another proposal: OP_PUSHTXDATA - push the value of different components

of a transaction to the stack
● Advantage over SIGHASH

○ Easier to implement and review
○ More than “equal to”, e.g. “value of output X must be at least Y BTC”, “version must not be Z”

(with 7-byte numeric comparison)
○ Combination of different components, e.g. “fees must be at least X satoshi per weight unit” (with

OP_MUL or OP_DIV)
○ Very flexible, e.g. “sign only inputs 1, 3, 5 and outputs 2, 4, 6 and ignore the rest”
○ Covenant: predefining the output script, e.g. “to spend this UTXO, script of the output X must be

in some restricted form and the value must be at least Y.” (with OP_CAT or OP_SUBSTR)

● Disadvantage over SIGHASH
○ Use more witness space
○ Money may be lost with poorly designed covenant (true for any poorly designed smart contracts)

■ Anyone-can-spend
■ No-one-can-spend
■ Locking money in an endless loop

Other useful new functions

Merkalized Abstract Syntax Tree (MAST)

● Expose only executed branch, and keep the rest hidden as hash
● O(logN) space efficiency instead of O(N)
● Allow very big scripts with many branches that are not possible today
● Better privacy as unused scripts are hidden

Public Key Aggregation
● n-of-n multi-sig becomes single-sig
● Increased privacy, less space

Other useful new functions

OP_CHECKSIGFROMSTACK (OP_CSFS)
● 3 arguments: public key, 32-byte message, signature
● Implemented in the Elements Project
● Potential use:

○ New commitment invalidation scheme
○ Signature for another Bitcoin UTXO
○ Signature for non-Bitcoin message, e.g. cross-chain swap

OP_ECADD, OP_ECMUL
● Performing elliptic curve point addition and multiplication
● Potential use:

○ More private replacement for HTLCs

Related Work-in-progress
Johnson Lau: Merkalized script (BIP114 and more https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2017-September/014963.html)

Mark Friedenbach: Merkle branch verification & tail-call execution semantics
(https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2017-September/014932.html)

Luke Dashjr: version-1 witness program (https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2017-October/015141.html)

Russell O'Connor: Simplicity (https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2017-October/015217.html)

Questions related to script design philosophy

● Static analyzability of script
● Turing completeness and recursion
● Limiting validation resources (sigop)
● Best way for further upgradability

Case Study: Re-Designing Payment Channels

● W/ new Script extensions, can improve channels over multiple dimensions:
○ Reduce amount of client side storage:

■ Historical chan state: C + O(log k) O(1)
● C = set of keys for script template
● K = height of revocation tree

■ HTLC storage for latest chan state: O(N) O(1)
● N = num active HTLCs (need sig for each)

○ Reduce amount of WatchTower Storage:
■ O(M) + O(N) + O(log k) O(1)

● M = num HTLC’s ever, N = num states
○ Allow for trap door anyone-can-revoke outputs:

■ Special clause in WatchTower contract to ensure inevitable enforcement
○ Channel open + cooperative close indistinguishable from regular payments

■ (can actually be done today)
○ Indistinguishable payment identifiers for multi-hop payments

Review of Commitment Invalidation

● Critical safety mechanism of BDP (BiDi Payment Channels):
○ We ensure both parties are incentivized to only broadcast the latest state
○ Otherwise, their entire balance within channel is slashed!

● History of prior commitment invalidation mechanisms:
○ Decrementing sequence locks (utilizes BIP 68)

■ How: use relative time-locks s.t latest state can go in before prior states
■ Drawback: limits number of possible updates

○ Commitment invalidation tree (used in Duplex Payment Channels (cdecker))
■ How: structure commitments in tree s.t parent must be broadcast before leaf

● Roots have decrementing time lock w/“kick-off” allows for indefinite lifetime
■ Drawback: at cost of increased on-chain foot print

○ Commitment Revocations (hash or key based, current channel design)
■ How: must reveal secret of prior state when accepting new state
■ Drawback: MUST critically store O(log N) of remote party, more complex key derivation

What if I told you....we don’t need revocations!

● Enter OP_CHECKSIGFROMSTACK
○ Review: allows checking signatures on arbitrary messages
○ Use: contracts can enforce structure on signed messages

● Invalidation via signed sequence commitments
○ Invalidation clause is now:

■ Present: (sig, n, r), s.t verify(sig, key, c) && open(c) == (n’, r) && n’ > n
■ “I know of an opening to a signed commitment (by broadcaster) of a newer seqno”

○ R is random value to ensure commitments are hiding
■ Avoids revealing # of updates in case of unilateral broadcast
■ Re-use sequence+locktime obfuscation mask (BOLT #3)

● Maintains same channel commitment state machine (BOLT #2)
○ Simplifies key derivation in current channels

● Reduces storage for both parties to O(1) (sig + commitment opening)
○ Has implications for the WatchTower

Review of WatchTower State Outsourcing

● LN assumes decentralized mining, on-chain liveness
○ On-chain censorship major issue
○ CSV value T acts as time-based security parameter

■ Configurable on a channel to channel basis

● If unable to be eternally vigilant, can outsource to WatchTower
○ Under current design:

■ For commitments:
● Send initial base points (needed to construct witness script template)
● For each state send a new signature for justice transaction

■ For HTLCs
● Encrypt opaque blob with txid[:16]

○ Various compensation/authentication mechanisms possible
■ ZKP’s for authentication
■ Pay-per-state, only provide bonus upon action, subscription, etc

Delegated Trapdoor Channel Outsourcing
● Using commitment seqno based revocation:

○ Due to seqno invalidation requirements only latest commitment required!
■ Each new sign commitment seqno replaces a lower seqno
■ Able to skip sending states as no strict ordering requirement

● Delegated Outsourcing:
○ With above still need to send sig for each state

■ Invalidation achieved, but need to bind to a pukey to ensure security
○ Solution:

■ Using covenants and OP_CHECKSIGFROMSTACK we’ll “bless” a pubkey
■ Blessed pubkeys can present final signature to satisfy invalidation
■ Use covenants to restrict structure of spending transaction

● Use to require they take a % as fee, pay to my key, etc, etc
■ Can use MAST to bless a set of pubkeys

● Free for all trapdoor: given public seqno commitment, let anyone spend after
delay

Eliminate Historical Second-Level HTLC Storage
● In current commitment design (BOLT#3) CSV+CLTV decoupled in HTLC’s:

○ Prior issue where if CSV is large, CLTV in total hop must be >>
○ Solved by making HTLC claiming a 2-stage state machine

■ Off-chain multi-sig covenants
■ Attest (broadcast) -> Delay (csv) -> Claim (sweep)

○ Cons:
■ Requires distinct transaction for each HTLC
■ Must store signature for each HTLC
■ New state updates require signing+verifying N sigs (for each HTLC)

● (post-schnorr can be batched tho)

● Solution:
○ Use actual covenants in HTLC outputs!
○ Eliminates sig+verify w/ commitment creation
○ Eliminates sig storage of current state
○ Add independant script for HTLC revocation clause (reuse commitment invalidation technique!)

Modifications for Increased Privacy

● Channels currently identifiable on-chain:
○ 2-of-2 multi-sig outputs stick out amongst other traffic
○ Candidate for miners to censor, outlawing contracts (censorshipResistance--)

● Multi-Sig -> Single-Sig (via multi-signatures):
○ Disguise channel openings are regular transactions
○ Use 2-party signing to generate signature for joint public key:

■ ECDSA: https://eprint.iacr.org/2017/552.pdf
● Uses paillier, zero knowledge proofs of correctness

■ Schnorr: https://cseweb.ucsd.edu/~mihir/papers/multisignatures-ccs.pdf
● Multi-signatures w/ built-in de-linearization

● Replace HTLC’s using EC operations (like Sphinx’s one little-trick):
○ Sphinx payload = (Q, P, r) s.t (Q = P + r*G)

■ Send P on outgoing HTLC
■ On settle, learn p, calc: q = p + r)
■ Use q to settle incoming HTLC

https://eprint.iacr.org/2017/552.pdf
https://cseweb.ucsd.edu/~mihir/papers/multisignatures-ccs.pdf

