Giulio Malavolta⁺, Pedro Moreno-Sanchez⁺, Aniket Kate[‡], Matteo Maffei^{*}, and Srivatsan Ravi[§]

⁺Friedrich-Alexander-University [‡]Purdue University *TU Vienna

Concurrency and Privacy with Payment Channel Networks

Bitcoin Scalability Issues

10 transactions per second >135 GB of memory required No micropayment (high fees)

Payment Channels

Payment Channel Networks (PCN)

Each payment channel requires to deposit bitcoins Impractical to open a channel with every other user

Hash Time-Lock Contracts

Hash-Time Lock Contract (HTLC) enables conditional payments between two users

HTLC(Alice, Bob, 1, y, 30):

Blockchain Transactions

Pay Bob 1 BTC iff Bob shows some x such that H(x) = y, before 30 days

 $H(x) \stackrel{?}{=} y$

Multiple "chained" HTLC enables multi-hop payments in the presence of untrusted intermediaries

Bob does not gain or lose coins

Contributions

- Definition of security and privacy properties for PCNs Privacy analysis of PCNs and solution (Fulgor)
- Concurrency analysis of PCNs and solution (Rayo)
- Prototype implementation

Our model highlights two main security properties:

Our model highlights two privacy properties

Off-path) value privacy:

* Off-chain payments => Privacy-preserving payments

Blockchain Transactions

Privacy in PCNs: Challenge?

* Off-chain payments \Rightarrow Privacy-preserving payments

Blockchain Transactions

Privacy in PCNs: Challenge?

Privacy in PCNs: Our Solution

- Our setting: P2P Network
- Our goal:
 - On-chain operations: HTLC as in the Lightning Network
 - Rest of cryptographic operations must be off-chain
 - Full compatibility with the current Bitcoin script
- Our solution:
 - Fulgor: Based on Multi-hop HTLC

Building block: Non-interactive zero knowledge (ZKBoo [GMO16])

Building block: Non-interactive zero knowledge (ZKBoo [GMO16])

Building block: Non-interactive zero knowledge (ZKBoo [GMO16])

Building block: Non-interactive zero knowledge (ZKBoo [GMO16])

Building block: Non-interactive zero knowledge (ZKBoo [GMO16])

HTLC(Alice, Bob, 1, y₁, 30) Alice $x_0 : H(x_0) = y_0$ $x_1 : H(x_0 \oplus x_1) = y_1$ $s := (x_1, y_1, y_0, \pi)$

Soundness of NIZK => Bob does not loss coins Zero-knowledge of NIZK => Bob does not steal coins

- Concurrent on-chain payments can be easily ordered by miners
- No user has a complete view of off-chain concurrent payments in a P2P network
- A blocking solution can lead to deadlocks

- Concurrent on-chain payments can be easily ordered by miners
- No user has a complete view of off-chain concurrent payments in a P2P network
- A blocking solution can lead to deadlocks

- Concurrent on-chain payments can be easily ordered by miners
- No user has a complete view of off-chain concurrent payments in a P2P network
- A blocking solution can lead to deadlocks

- Concurrent on-chain payments can be easily ordered by miners
- No user has a complete view of off-chain concurrent payments in a P2P network
- A blocking solution can lead to deadlocks

Main idea: Use global transaction identifiers

Concurrency in PCNs: Our Solution

A non-blocking solution (Rayo): at least one payment finishes

Concurrency vs Privacy Tradeoff

Global identifiers leak transaction ID to intermediate users Non-blocking solutions cannot achieve strong privacy

Implementation and Performance

- Running time of our solution largely dominated by NIZK
 - Creating a proof requires 309 ms. Proof verification requires 130 ms
 - Proof size: 1.65MB
- 5-hop payment:
 - Non-private (LN): 609 ms

Private: 1929 ms and ~ 5 MB (Proofs are not included in the blockchain)

- Define the security and privacy properties of interest in PCN
- Inherent tradeoff between concurrency and privacy
- Fulgor and Rayo: two approaches for concurrency and privacy
- Our solutions are efficient, compatible with Bitcoin script and without storage overhead in the blockchain

Conclusions

Thank you for your attention!

Giulio Malavolta, Pedro Moreno-Sanchez, @pedrorechez

Aniket Kate, Matteo Maffei, and Srivatsan Ravi @aniketpkate @matteo_maffei

Paper: eprint.iacr.org/2017/820

