

Incentives and Trade-offs in Transaction Selection in DAG-based Protocols

Yonatan Sompolinsky and Yoad Lewenberg Scaling Bitcoin, Stanford

Background

- Directed Acyclic Graph of blocks (blockDAG)
- <u>Inclusive Blockchain Protocols</u>, Financial Crypto '15, Lewenberg, Sompolinsky, and Zohar
- Modification and scaling up of Layer 1
- Orthogonal to Layer 2 solutions

Blockchain vs BlockDAG

Chain paradigm:

- 1. maintain single chain
- 2. ignore the rest
- 3. forks rare

DAG paradigm:

- 1. maintain entire graph
- 2. consider all blocks
- 3. forks common

The BlockDAG paradigm

more information possibly implies:

- more security
- more scalability
- more fairness

DAG paradigm:

- 1. maintain entire graph
- 2. consider all blocks
- 3. forks common

Road to scaling up Layer 1

speed up block rate (or size)

reference all blocks

extract consistency

Road to scaling up Layer 1

- DAG merely a framework, not a solution
- Not all blockDAGs are created equal
- DAG vs chain like highway vs one-lane road...

- DAG merely a framework, not a solution
- Not all blockDAGs are created equal
- DAG vs chain like highway vs one-lane road...

- DAG merely a framework, not a solution
- Not all blockDAGs are created equal
- DAG vs chain like highway vs one-lane road...

- DAG merely a framework, not a solution
- Not all blockDAGs are created equal
- DAG vs chain like highway vs one-lane road...

Scaling up Layer 1 -- challenges

decentralization

fairness

throughput & confirmation times

fee structure

POW calculation

consistency rule

storage

bandwidth utilization

Two scenarios for DAG throughput

mempool: tx1>tx2>tx3>tx4>... (non-conflicting)

tx1,tx2 selected & approved tx3,tx4 still in mempool

under utilization

tx1,tx2,tx3,tx4 selected & approved (mempool cleared faster)

full utilization

Proposition 1: under naïve/greedy mining, DAG throughput ≈ chain throughput

Key observation / good news

Miners are incentivized to be avoid selecting the same txns, and to contribute to throughput increase.

Indeed, "collisions" result in loss of fees...

The Inclusive Game

mempool: tx1>tx2 players: miner1, miner2

	miner2 chose tx1	miner2 chose tx2	
miner1 chose tx1	(0.5*tx1, 0.5*tx1)	(tx1, tx2)	
miner1 chose tx2	(tx2, tx1)	(0.5*tx2, 0.5*tx2)	
collision on tx1 collision on tx2			

The Inclusive Game

pure strategy: select a txn

mixed strategy: select a txn using randomness

How to "solve" the game

level of cooperation

adversarial selfish selfish + altruistic coordination

solution: solution: solution: solution:
Safety Level Nash Equ. Correlated Equ. Max Social Welfare

Max Social Welfare

• Solution: select txns uniformly [above <u>capacity threshold</u>]

• No collisions, full utilization

• But there's a catch...

High throughput is not enough

1. Strategically unstable

2. Forces egalitarian waiting times, no QoS levels and preferential treatment

High throughput is not enough

1. Strategically unstable

2. Forces egalitarian waiting times, no QoS levels and

preferential treatment

Trade-off: high utilization vs fast conf. times

shorter waiting times → more collisions → lower utilization

Nash Equilibrium

- ____
- Finding Nash usually hard
- Tit-for-tat strategies
- Greedy pools/miners will suffer retaliation (?)

round #1

miner1\miner2	<u>tx1</u>	<u>tx2</u>
<u>tx1</u>	(0.5*tx1, 0.5*tx1)	(tx1, tx2)
tx2	(tx2, tx1)	(0.5*tx2, 0.5*tx2)

round #2

miner1\miner2	<u>tx1</u>	<u>tx2</u>
<u>tx1</u>	(0.5*tx1, 0.5*tx1)	(tx1, tx2)
tx2	(tx2, tx1)	(0.5*tx2, 0.5*tx2)

round #3

miner1\miner2	<u>tx1</u>	<u>tx2</u>
<u>tx1</u>	(0.5*tx1, 0.5*tx1)	(tx1, tx2)
<u>tx2</u>	(tx2, tx1)	(0.5*tx2, 0.5*tx2)

Nash Equilibrium (myopic)

- Assigns high probability to high paying txns
- Not too greedy: top txns not necessarily selected

Theorem 6. Suppose the memory buffer consists of k_l transactions with fee v_l $(1 \leq l \leq n)$. Denote the individual transactions by w_1, \ldots, w_m , which are sorted in descending order of their fees. Denote the index of $v(w_i)$ by $l(w_i)$. The marginal probability $p_i := \frac{q_{l(w_i)}}{k_{l(w_i)}} (1 \leq i \leq m)$ defines a symmetric equilibrium in the single-shot inclusive-F game, where:

$$-q_{l} = \begin{cases} k_{l} \cdot \min\left(f^{-1}\left(\frac{c_{k_{max}}}{v_{l}}\right), 1\right) & 1 \leq l \leq k_{max} \\ 0 & k_{max} < l \leq n \end{cases}$$

$$- \forall 1 \leq l \leq n : G_{l}(z) := \sum_{h=1}^{l} k_{h} \cdot \min\left(f^{-1}\left(\frac{z}{v_{h}}\right), 1\right) - b$$

$$-k_{max} := \max\{k \leq n \mid \forall l \leq k : G_{l}(v_{l}) \leq 0\}$$

$$-c_{k_{max}} \text{ is the root of } G_{k_{max}}.$$

Throughput under Nash

```
Throughput of: DAG + greedy mining (green)

DAG + Nash Equ. (blue)

DAG + optimal utilization (red)
```


QoS levels

Correlated Equilibrium / asymmetric Nash

- Can we do better by somehow coordinating between miners?
- Preliminary results: yes, higher throughput
- Coordination mechanism: using prvs blocks' randomness
- Future work

Scaling and incentives

- Strategic mining in Bitcoin -- sophisticated, risky in DAG -- easy (but also marginal)
- Decisions more granular: which txns to select?

 how fast to release blocks?
- "Lazy" selfish mining -- miner is lazy in information sharing, does not contribute reasonable bandwidth

When implementing BlockDAG protocols -- incentives *really* matter

"Bitcoiners of the world, unite!
You have nothing to lose but your chains!"