ValueShuffle: Mixing Confidential Transactions Tim Ruffing @real_or_random Pedro Moreno-Sanchez @pedrorechez Bitlodine [Spagnuolo, Maggi, Zanero 2013] Bitlodine [Spagnuolo, Maggi, Zanero 2013] Bitlodine [Spagnuolo, Maggi, Zanero 2013] #### CoinJoin | | Input | Output | | |---|------------|-------------|---| | B | A: 1.0 BTC | C': 1.0 BTC | B | | | B: 1.0 BTC | A': 1.0 BTC | B | | B | C: 1.0 BTC | B': 1.0 BTC | 8 | ### CoinJoin | | | | Mixed list of | |---|------------|------------|-----------------| | | Input | Output | fresh addresses | | B | A: 1.0 BTC | C' 1.0 BTC | | | | B: 1.0 BTC | A' 1.0 BTC | | | B | C: 1.0 BTC | B' 1.0 BTC | | #### CoinJoin # **DiceMix: An Efficient P2P Mixing Protocol** Tim Ruffing, Pedro Moreno-Sanchez, Aniket Kate. NDSS 2017 A' #### **Confirmation** Peers agree on the output and sign it Mix B' D' R - C' C' \sim D A' #### **Confirmation** Peers agree on the output and sign it #### **P2P Trust model** No mutual trust, no thirdparty anonymity routers Mix Mix C' A' #### **Confirmation** Peers agree on the output and sign it - No mutual trust, no thirdparty anonymity routers - Bulletin board for communication, no trust #### **Confirmation** Peers agree on the output and sign it - No mutual trust, no thirdparty anonymity routers - Bulletin board for communication, no trust #### **Confirmation** Peers agree on the output and sign it - No mutual trust, no thirdparty anonymity routers - Bulletin board for communication, no trust - Anoymity set is the set of honest users #### **Confirmation** Peers agree on the output and sign it - No mutual trust, no thirdparty anonymity routers - Bulletin board for communication, no trust - Anoymity set is the set of honest users - Protocol must terminate in the presence of malicious users #### **Goal:** Kick out the disrupting user and start from scratch. ? Kick out the disrupting user and start from scratch. **Problem:** Anonymity ? # **Handling Disruptions** #### **Handling Disruptions** # IN CASE OF DISRUPTION **BREAK ANONYMITY** Generate fresh output address Possible because addresses are discardable # Discardability in P2P Mixing # Discardability in P2P Mixing ## **Discardability in P2P Mixing** ## Mixing # Why Mixing Sucks: A Play in Three Acts **Bob wants to Mix Coins** | | Input | Output | | |---|-------------------|--------------------|---| | B | A: 1.0 BTC | C': 1.0 BTC | B | | | B: 1.2 BTC | A': 1.0 BTC | B | | B | C: 1.0 BTC | B': 1.2 BTC | 8 | | | Input | Output | | |---|-------------------|--------------------|---| | B | A: 1.0 BTC | C': 1.0 BTC | B | | | B: 1.2 BTC | A': 1.0 BTC | B | | B | C: 1.0 BTC | B': 1.0 BTC | 8 | | | | B": 0.2 BTC | | | | Input | Output | | | |---|-------------------|--------------------|---|------------------| | B | A: 1.0 BTC | C': 1.0 BTC | B | | | | B: 1.2 BTC | A': 1.0 BTC | B | What to do | | B | C: 1.0 BTC | B': 1.0 BTC | | with the change? | | | | B": 0.2 BTC | 8 | | | | Input | Output | | |---|-------------------|--------------------|---| | B | A: 1.0 BTC | C': 1.0 BTC | B | | | B: 1.2 BTC | A': 1.0 BTC | B | | B | C: 1.0 BTC | R: 0.5 BTC | | | | | B': 0.5 BTC | 8 | | | | B": 0.2 BTC | 8 | | | Input | Output | | |---|-------------------|--------------------|---| | B | A: 1.0 BTC | C': 1.0 BTC | B | | | B: 1.2 BTC | A': 1.0 BTC | B | | B | C: 1.0 BTC | R: 0.5 BTC | | | | | B': 0.5 BTC | | | | | B": 0.2 BTC | | Bob's message in P2P mixing protocol: (B', 0.5) Bob's message in P2P mixing protocol: (B', 0.5) | | Input | Output | | | Input | Output | | |---|-------------------|--------------------|-----|---|--------------------|----------------------|---| | B | A: 1.0 BTC | C': 1.0 BTC | B | | B': 1.0 BTC | R: 0.5 BTC | | | | B: 1.2 BTC | A': 1.0 BTC | B | | | B''': 0.5 BTC | 8 | | B | C: 1.0 BTC | B': 1.0 BTC | 8 — | J | | | | | | | B": 0.2 BTC | 8 | | | | | | | Input | Output | | | Input | Output | | |---|-------------------|--------------------|-----|------|--------------------|----------------------|---| | B | A: 1.0 BTC | C': 1.0 BTC | B | | B': 1.0 BTC | R: 0.5 BTC | | | | B: 1.2 BTC | A': 1.0 BTC | B | | | B''': 0.5 BTC | 8 | | B | C: 1.0 BTC | B': 1.0 BTC | 8 — | J | | | | | | | B": 0.2 BTC | | | | | | | | | | | | | | | | | | | | Inee | ed two transa | ctions?! | | | | Input | Output | | | Input | Output | | |---|-------------------|--------------------|-----|-----------|--------------------|----------------------|---| | | A: 1.0 BTC | C': 1.0 BTC | | -8 | B': 1.0 BTC | R: 0.5 BTC | | | | B: 1.2 BTC | A': 1.0 BTC | B | | | B''': 0.5 BTC | 8 | | B | C: 1.0 BTC | B': 1.0 BTC | 8 — | | | | | | | | B": 0.2 BTC | | | | | | | | Input | Output | | | Input | Output | | |---|-------------------|--------------------|-----|------------|----------------------|----------------------|--| | B | A: 1.0 BTC | C': 1.0 BTC | B | — 8 | B': 1.0 BTC | R: 0.5 BTC | | | | B: 1.2 BTC | A': 1.0 BTC | B | | | B''': 0.5 BTC | | | B | C: 1.0 BTC | B': 1.0 BTC | 8 — | | | | | | | | B": 0.2 BTC | 8 — | | Input | Output | | | | | | | | B''': 0.5 BTC | S: 0.7 BTC | | | | | | L | <u> </u> | B": 0.2 BTC | | | | | Input | Output | | Input | Output | |---|-------------------|--------------------|-----|----------------------|----------------------| | | A: 1.0 BTC | C': 1.0 BTC | | B': 1.0 BTC | R: 0.5 BTC | | 3 | B: 1.2 BTC | A': 1.0 BTC | | | B''': 0.5 BTC | | | C: 1.0 BTC | B': 1.0 BTC | | | | | | | B": 0.2 BTC | 8 — | Input | Output | | | | | | B''': 0.5 BTC | S: 0.7 BTC | | | | | | B": 0.2 BTC | | | Input | Output | | Input | Output | |-------------------|--------------------|-----|----------------------|----------------------| | A: 1.0 BTC | C': 1.0 BTC | | B': 1.0 BTC | R: 0.5 BTC | | B: 1.2 BTC | A': 1.0 BTC | | | B''': 0.5 BTC | | C: 1.0 BTC | B': 1.0 BTC | | | | | | B": 0.2 BTC | 8 — | Input | Output | | | | | B''': 0.5 BTC | S: 0.7 BTC | | | | | B": 0.2 BTC | | | Input | Output | | Input | Output | |-------------------|--------------------|------------|----------------------|----------------------| | A: 1.0 BTC | C': 1.0 BTC | | B': 1.0 BTC | R: 0.5 BTC | | B: 1.2 BTC | A': 1.0 BTC | | | B''': 0.5 BTC | | C: 1.0 BTC | B': 1.0 BTC | | | | | | B": 0.2 BTC | | Input | Output | | | | L 8 | B''': 0.5 BTC | S: 0.7 BTC | | | | | B": 0.2 BTC | | | Input | Output | | | Input | Output | | |-------------------|--------------------|-----|---|----------------------|----------------------|-----| | A: 1.0 BTC | C': 1.0 BTC | | | B': 1.0 BTC | R: 0.5 BTC | | | B: 1.2 BTC | A': 1.0 BTC | | | | B''': 0.5 BTC | 8 - | | C: 1.0 BTC | B': 1.0 BTC | | J | | | | | | B": 0.2 BTC | 8 - | 1 | Input | Output | | | | | | | B''': 0.5 BTC | S: 0.7 BTC | | | | | | | B": 0.2 BTC | | | | Input | Output | | Input | Output | | |-------------------|--------------------|------------|----------------------|----------------------|-----| | A: 1.0 BTC | C': 1.0 BTC | | B': 1.0 BTC | R: 0.5 BTC | | | B: 1.2 BTC | A': 1.0 BTC | | | B''': 0.5 BTC | 8 - | | C: 1.0 BTC | B': 1.0 BTC | l | | | | | | B": 0.2 BTC | | Input | Output | | | | | L 8 | B''': 0.5 BTC | S: 0.7 BTC | | | | | _ 8 | B": 0.2 BTC | | | | | Input | Output | |--|-------------------|--------------------| | | A: 1.0 BTC | C': 1.0 BTC | | | B: 1.2 BTC | A': 1.0 BTC | | | C: 1.0 BTC | B': 1.0 BTC | | | | B": 0.2 BTC | | Input | Output | | Input | Output | |-------------------|--------------------|-----|---------------------|----------------------| | A: 1.0 BTC | C': 1.0 BTC | | B': 1.0 BTC | R: 0.5 BTC | | B: 1.2 BTC | A': 1.0 BTC | | | B''': 0.5 BTC | | C: 1.0 BTC | B': 1.0 BTC | 8 — | | | | | B": 0.2 BTC | | Input | Output | | | | | B"": 0.5 BTC | S: 0.7 BTC | | Dam | n it! | | B": 0.2 BTC | | #### **Many Problems** # Root of all evil: transacted values are public #### **Many Problems** # Root of all evil: transacted values are public $$1.0 + 0.2 = 1.2$$ $$0.5 + 0.5 = 1.0$$ ## **ValueShuffle** **Let's Add Confidential Transactions** $$c = \operatorname{Com}(x, r)$$ $$c = \operatorname{Com}(x, r)$$ Hiding: given just c, you don't learn anything about x $$c = \operatorname{Com}(x, r)$$ - Hiding: given just c, you don't learn anything about x - Binding: you cannot open c to anything but x (and create money) $$c = \operatorname{Com}(x, r)$$ - Hiding: given just c, you don't learn anything about x - Binding: you cannot open c to anything but x (and create money) $$Com(x_1, r_1) + Com(x_2, r_2) = Com(x_1 + x_2, r_1 + r_2)$$ | Input | Output | |---------------------------------|-------------------------------------------| | A: Com(5.4, r _{in,A}) | C': Com(0.1, r _{out,C'}) | | B: Com(1.2, r _{in,B}) | B': Com(0.7, <i>r</i> _{out,B'}) | | C: Com(0.3, r _{in,C}) | RA: Com(0.4, r _{out,A}) | | | RC: Com(0.2, $r_{\text{out,C}}$) | | | A': Com(5.0, <i>r</i> _{out,A'}) | | | RB: Com(0.5, $r_{\text{out,B}}$) | | | Input | Output | | |---|----------------------------------------|-------------------------------------------|-----| | B | A: Com(5.4, r _{in,A}) | C': Com(0.1, r _{out,C'}) | B | | | B: Com(1.2, <i>r</i> _{in,B}) | B': Com(0.7, <i>r</i> _{out,B'}) | 8 | | B | C: Com(0.3, r _{in,C}) | RA: Com(0.4, r _{out,A}) | | | | | RC: Com(0.2, $r_{\text{out,C}}$) | | | | | A': Com(5.0, r _{out,A'}) | (A) | | | | RB: Com $(0.5, r_{\text{out,B}})$ | | Com(0, r) | | Input | Output | | |--------------------------------------------|----------------------------------------|------------------------------------|---| | B | A: Com(5.4, r _{in,A}) | C': Com(0.1, r _{out,C'}) | B | | | B: Com(1.2, <i>r</i> _{in,B}) | B': Com(0.7, r _{out,B'}) | | | B | C: Com(0.3, r _{in,C}) | RA: Com(0.4, r _{out,A}) | | | Reveal excess value pen the sum commitment | | RC: Com(0.2, r _{out,C}) | | | | | A': Com(5.0, r _{out,A'}) | B | | | | RB: Com(0.5, $r_{\text{out,B}}$) | | | | | | | Com(0, r) | | Input | Output | | |----------------------------|----------------------------------------|------------------------------------|---| | | A: Com(5.4, r _{in,A}) | C': Com(0.1, r _{out,C'}) | B | | | B: Com(1.2, <i>r</i> _{in,B}) | B': Com(0.7, r _{out,B'}) | | | | C: Com(0.3, r _{in,C}) | RA: Com(0.4, r _{out,A}) | | | Reve | eal excess value | RC: Com(0.2, r _{out,C}) | | | to open the sum commitment | | A': Com(5.0, r _{out,A'}) | B | | | | RB: Com $(0.5, r_{\text{out,B}})$ | | $$Com(0, r) = Com(0, 0)$$ | Input | Output | |---------------------------------|-------------------------------------------| | A: Com(5.4, r _{in,A}) | C': Com(0.1, r _{out,C'}) | | B: Com(1.2, r _{in,B}) | B': Com(0.7, <i>r</i> _{out,B'}) | | C: Com(0.3, r _{in,C}) | RA: Com(0.4, r _{out,A}) | | | RC: Com(0.2, $r_{\text{out,C}}$) | | | A': Com(5.0, r _{out,A'}) | | | RB: Com $(0.5, r_{\text{out,B}})$ | | Input | Output | |---------------------------------|------------------------------------| | A: Com(5.4, r _{in,A}) | C': Com(0.1, r _{out,C'}) | | B: Com(1.2, r _{in,B}) | B': Com(0.7, r _{out,B'}) | | C: Com(0.3, r _{in,C}) | RA: Com(0.4, r _{out,A}) | | | RC: Com(0.2, r _{out,C}) | | | A': Com(5.0, r _{out,A'}) | | | RB: Com(0.5, $r_{\text{out,B}}$) | ### **CoinJoin With Confidential Transactions** | | Input | Output | | |---|---------------------------------|------------------------------------|---| | B | A: Com(5.4, r _{in,A}) | C': Com(0.1, r _{out,C'}) | B | | | B: Com(1.2, $r_{\text{in,B}}$) | B': Com(0.7, $r_{\text{out,B'}}$) | 8 | | B | C: Com(0.3, r _{in,C}) | RA: Com(0.4, r _{out,A}) | | | | | RC: Com(0.2, $r_{\text{out,C}}$) | | | | | A': Com(5.0, r _{out,A'}) | B | | | | RB: Com(0.5, $r_{\text{out,B}}$) | | We need to compute the sum *r* such that individual summands are not revealed. ## **CoinJoin With Confidential Transactions** | Input | Output | | |-------------------------------------------------|-------------------------------------------|--| | A: Com(5.4, r _{in,A}) | C': Com(0.1, r _{out,C'}) | | | B: Com(1.2, $r_{in,B}$) B': Com(0.7, r_{out} | | | | C: Com(0.3, $r_{in,C}$) RA: Com(0.4, r_{out} | | | | | RC: Com(0.2, $r_{\text{out,C}}$) | | | | A': Com(5.0, <i>r</i> _{out,A'}) | | | | RB: Com(0.5, $r_{\text{out,B}}$) | | | | F: 0.0, - r | | ### **CoinJoin With Confidential Transactions** | | Input | Output | | |---|---------------------------------|------------------------------------|---| | B | A: Com(5.4, r _{in,A}) | C': Com(0.1, r _{out,C'}) | B | | | B: Com(1.2, r _{in,B}) | B': Com(0.7, r _{out,B'}) | 8 | | B | C: Com(0.3, r _{in,C}) | RA: Com(0.4, r _{out,A}) | | | | | RC: Com(0.2, $r_{\text{out,C}}$) | | | | | A': Com(5.0, r _{out,A'}) | | | | | RB: Com(0.5, $r_{\text{out,B}}$) | | | | | F: 0.0, - <i>r</i> | | Com(0, 0) ### **ValueShuffle** | Input | Output | | |---------------------------------|------------------------------------|--| | A: Com(5.4, r _{in,A}) | C': Com(0.1, r _{out,C'}) | | | B: Com(1.2, r _{in,B}) | B': Com(0.7, r _{out,B'}) | | | C: Com(0.3, r _{in,C}) | RA: Com(0.4, r _{out,A}) | | | | RC: Com(0.2, r _{out,C}) | | | | A': Com(5.0, r _{out,A'}) | | | | RB: Com(0.5, r _{out,B}) | | | | Input | Output | | |---|---------------------------------|------------------------------------|---| | B | A: Com(5.4, r _{in,A}) | C': Com(0.1, r _{out,C'}) | B | | | B: Com(1.2, r _{in,B}) | B': Com(0.7, r _{out,B'}) | 8 | | B | C: Com(0.3, r _{in,C}) | RA: Com(0.4, r _{out,A}) | | | | | RC: Com(0.2, r _{out,C}) | | | | | A': Com(5.0, r _{out,A'}) | B | | | | RB: Com(0.5, r _{out,B}) | | Bob's messages in mixing protocol: (B', Com(0.7, $r_{out,B'}$), $aux_{B'}$) and (RB, Com(0.5, $r_{out,B}$), aux_{RB}) | | Input | Output | | |------------------|---------------------------------|------------------------------------|---| | | A: Com(5.4, r _{in,A}) | C': Com(0.1, r _{out,C'}) | B | | | B: Com(1.2, r _{in,B}) | B': Com(0.7, r _{out,B'}) | | | | C: Com(0.3, r _{in,C}) | RA: Com(0.4, r _{out,A}) | | | | | RC: Com(0.2, r _{out,C}) | | | Discardable chan | ge address | A': Com(5.0, r _{out,A'}) | B | | | | RB: Com(0.5, r _{out,B}) | | Bob's messages in mixing protocol: (B', Com(0.7, $r_{out,B'}$), $aux_{B'}$) and (RB, Com(0.5, $r_{out,B}$), aux_{RB}) | | Input | Output | | |----------|---------------------------------|------------------------------------|---| | B | A: Com(5.4, r _{in,A}) | C': Com(0.1, r _{out,C'}) | | | | B: Com(1.2, r _{in,B}) | B': Com(0.7, r _{out,B'}) | (| | B | C: Com(0.3, r _{in,C}) | RA: Com(0.4, r _{out,A}) | | | | | RC: Com(0.2, r _{out,C}) | | | <u> </u> | 1.1.1 | | | Discardable commitments: Com(5.0, r_{out,A'}) RB: $Com(0.5, r_{out,B})$ lob's messages in mixing protocol: (B', Com(0.7, $r_{out,B'}$), aux_{B'}) and (RB, Com(0.5, $r_{out,B}$), aux_{RB}) | | Input | Output | | |---|-----------------------------------------------------|------------------------------------|---| | B | A: Com(5.4, r _{in,A}) | C': Com(0.1, r _{out,C'}) | B | | | B: Com(1.2, r _{in,B}) | B': Com(0.7, r _{out,B'}) | 8 | | B | C: Com(0.3, r _{in,C}) | RA: Com(0.4, r _{out,A}) | | | | Discardable aux info (range proofs) RB: Com(c. 3) | | | Bob's mess ges in mixing protocol: (B', Com(0.7, $r_{out,B'}$), $aux_{B'}$) and (RB, Com(0.5, $r_{out,B}$), aux_{RB}) | | Input | Output | | |---|---------------------------------|------------------------------------|---| | B | A: Com(5.4, r _{in,A}) | C': Com(0.1, r _{out,C'}) | B | | | B: Com(1.2, r _{in,B}) | B': Com(0.7, r _{out,B'}) | | | B | C: Com(0.3, r _{in,C}) | RA: Com(0.4, r _{out,A}) | | | | | $RC \cdot Com(0.2 r_{out}c)$ | | | | | Discardable recipient address | | | | | (BIP 32, stealth addresses,) | | | | | RB: (, r _{out,B}) | | Bob's messages in mixing protocol: (B', Com(0.7, $r_{out,B'}$), $aux_{B'}$) and (RB, Com(0.5, $r_{out,B}$), aux_{RB}) No problems with change addresses No problems with change addresses No need for two transactions to spend No problems with change addresses No need for two transactions to spend No foot-cannon when spending change No problems with change addresses No need for two transactions to spend No foot-cannon when spending change No need to have the same amounts No problems with change addresses No need for two transactions to spend No foot-cannon when spending change No need to have the same amounts Great synergy: value privacy and unlinkability CoinJoin transaction smaller than set of individual transactions - CoinJoin transaction smaller than set of individual transactions - Really takes off with signature aggregation (e.g. Bellare-Neven) - CoinJoin transaction smaller than set of individual transactions - Really takes off with signature aggregation (e.g. Bellare-Neven) - We save - Precious space in the blockchain - Verification time - CoinJoin transaction smaller than set of individual transactions - Really takes off with signature aggregation (e.g. Bellare-Neven) - We save - Precious space in the blockchain - Verification time - User saves fees! #### **Variants of DiceMix** #### **DiceMix** - 4 + 2*f* communication rounds - Some heavy computation if messages are large (Polynomial factorization in finite fields) - Variant in the paper #### **Variants of DiceMix** #### **DiceMix** - 4 + 2*f* communication rounds - Some heavy computation if messages are large (Polynomial factorization in finite fields) - Variant in the paper #### **DiceMix Light** - 5 + 3*f* communication rounds - No heavy computation - Simpler protocol - https://github.com/ElementsProject/dicemix Banning disruptive users - Banning disruptive users - Naive approach: Server keeps a ban list of disruptive users (= UTXOs) - Banning disruptive users - Naive approach: Server keeps a ban list of disruptive users (= UTXOs) - Current idea: Just rate limiting (*n* tries per UTXO) like JoinMarket - Banning disruptive users - Naive approach: Server keeps a ban list of disruptive users (= UTXOs) - Current idea: Just rate limiting (*n* tries per UTXO) like JoinMarket - Public key pk gives you n tokens - Banning disruptive users - Naive approach: Server keeps a ban list of disruptive users (= UTXOs) - Current idea: Just rate limiting (*n* tries per UTXO) like JoinMarket - Public key pk gives you n tokens - Users need to add a token to the ban list when starting a protocol - Banning disruptive users - Naive approach: Server keeps a ban list of disruptive users (= UTXOs) - Current idea: Just rate limiting (*n* tries per UTXO) like JoinMarket - Public key pk gives you n tokens - Users need to add a token to the ban list when starting a protocol - Double-spending - Banning disruptive users - Naive approach: Server keeps a ban list of disruptive users (= UTXOs) - Current idea: Just rate limiting (*n* tries per UTXO) like JoinMarket - Public key pk gives you n tokens - Users need to add a token to the ban list when starting a protocol - Double-spending - Availability of bulletin board - Banning disruptive users - Naive approach: Server keeps a ban list of disruptive users (= UTXOs) - Current idea: Just rate limiting (*n* tries per UTXO) like JoinMarket - Public key pk gives you n tokens - Users need to add a token to the ban list when starting a protocol - Double-spending - Availability of bulletin board - Other issues? # ValueShuffle in the Bitcoin Privacy Landscape ## ValueShuffle in the Bitcoin Privacy Landscape ### Flowchart of ValueShuffle 4 + 2*f* rounds (*f* disrupting peers) ### **Architecture** peer ### **Architecture** peer peer ### **Architecture** # **Comparison with Related Work** | | Anonymity set | Mixing overhead | Non-
interactive | Pruning | |---------------------|--------------------|--------------------------------|---------------------|---------| | ValueShuffle | Moderate
(~ 50) | off-chain | no | yes | | Monero /
Ring-CT | Small
(~ 10) | on-chain | yes | no | | TumbleBit | Large
(~ 800) | 4 tx per mixing (classic mode) | yes | yes | | Zcash | Full | ? | yes | no | $$M = \{m_1, m_2, m_3, m_4\}$$ $$M = \{m_1, m_2, m_3, m_4\}$$ $M' = \{m_1, m_3\}$ $$M = \{m_1, m_2, m_3, m_4\}$$ $M' = \{m_1, m_3\}$ $M \setminus M' = \{m_2, m_4\}$ m_4 is attacker's msg. $$M = \{m_1, m_2, m_3, m_4\}$$ $M' = \{m_1, m_3\}$ $M \setminus M' = \{m_2, m_4\}$ m_4 is attacker's msg. m_2 is Bob's msg. $$M = \{m_1, m_2, m_3, m_4\}$$ $M' = \{m_1, m_3\}$ $M \setminus M' = \{m_2, m_4\}$ m_4 is attacker's msg. m_2 is Bob's msg. Practical attack against Dissent protocol [CCS 2013]! ## **DiceMix** A Practical P2P Mixing Protocol based on DC-nets Mixnet run by all peers #### Mixnet run by all peers Dissent (shuffle protocol) [CCS 2010], CoinShuffle [ESORICS 2014] ### Mixnet run by all peers • Dissent (shuffle protocol) [CCS 2010], CoinShuffle [ESORICS 2014] ### Mixnet run by all peers - Dissent (shuffle protocol) [CCS 2010], CoinShuffle [ESORICS 2014] - O(*n*) rounds in optimistic case #### Mixnet run by all peers - Dissent (shuffle protocol) [CCS 2010], CoinShuffle [ESORICS 2014] - O(n) rounds in optimistic case - O(nf) rounds for f malicious peers #### Mixnet run by all peers - Dissent (shuffle protocol) [CCS 2010], CoinShuffle [ESORICS 2014] - O(n) rounds in optimistic case - O(nf) rounds for f malicious peers Mixnet solution does not scale! Dining cryptographers' networks (DC-nets) • Hope for O(1) rounds in the optimistic case - Hope for O(1) rounds in the optimistic case - Easy to disrupt - Hope for O(1) rounds in the optimistic case - Easy to disrupt - All approaches to solve disruption problem suffer from drawbacks - Hope for O(1) rounds in the optimistic case - Easy to disrupt - All approaches to solve disruption problem suffer from drawbacks - Golle and Juels [EUROCRYPT 2004]: Honest majority #### Dining cryptographers' networks (DC-nets) - Hope for O(1) rounds in the optimistic case - Easy to disrupt - All approaches to solve disruption problem suffer from drawbacks - Golle and Juels [EUROCRYPT 2004]: Honest majority No practical P2P mixing protocol based on DC-nets! User 1: m_1 User 2: m_2 R User 3: m_3 • User n: m_n $$\sum_{i=1}^{n} m_i$$ | • | $\sum_{i=1}^{n} m_i$ | $\sum_{i=1}^{n} m_i^2$ | $\sum_{i=1}^{n} m_i^3$ | ••• | $\sum_{i=1}^{n} m_i^n$ | |---------|----------------------|------------------------|------------------------|-------|------------------------| | User n: | m_n | m_n^2 | m_n^3 | ••• | m_n^n | | User 3: | m_3 | m_3^2 | m_3^3 | ••• | m_3^n | | User 2: | m_2 | m_2^2 | m_{2}^{3} | ••• | m_2^n | | User 1: | m_1 | m_1^2 | m_1^3 | • • • | m_1^n | | User 1: User 2: User 3: User n: | m_1 m_2 m_3 \vdots m_n | m_{1}^{2} m_{2}^{2} m_{3}^{2} \vdots m_{n}^{2} | m_{1}^{3} m_{2}^{3} m_{3}^{3} \vdots m_{n}^{3} | ••• | m_1^n m_2^n m_3^n \vdots m_n^n | |---------------------------------|----------------------------------|--|--|-----|--| | | $\sum_{i=1}^{n} m_i$ | $\sum_{i=1}^{n} m_i^2$ | $\sum_{i=1}^{n} m_i^3$ | ••• | $\sum_{i=1}^{n} m_i^n$ | Newton's identities tell us the coefficients of the polynomial $\prod_{i=1}^{n} (x-m_i)$. | • | $\sum_{i=1}^{n} m_i$ | $\sum_{i=1}^{n} m_i^2$ | $\sum_{i=1}^{n} m_i^3$ | ••• | $\sum_{i=1}^{n} m_i^n$ | |---------|----------------------|------------------------|------------------------|-------|------------------------| | User n: | \vdots m_n | m_n^2 | m_n^3 | ••• | m_n^n | | User 3: | m_3 | m_3^2 | m_3^3 | ••• | m_3^n | | User 2: | m_2 | m_2^2 | m_{2}^{3} | • • • | m_2^n | | User 1: | m_1 | m_1^2 | m_1^3 | • • • | m_1^n | Newton's identities tell us the coefficients of the polynomial $\prod_{i=1}^{n} (x-m_i)$. \rightarrow Polynomial factorization recovers the messages. # **Disruption** | User 1: | $m_1^{}$ | m_1^2 | m_1^3 | • • • | m_1^n | |---------|----------|---------|-------------------------------------|-------|---------| | User 2: | m_1 | m_2^2 | $m_{1}^{3} \ m_{2}^{3} \ m_{3}^{3}$ | ••• | m_2^n | | User 3: | m_3 | m_3^2 | m_3^3 | ••• | m_3^n | | | • | 2 | 3 | ••• | n | | User n: | m_n | m_n^2 | m_n^3 | ••• | m_n^n | | • | | | | | | | | | | | ••• | | | | | | | | | # **Disruption** # **Disruption** Malicious user stays anonymous! Generate fresh message Run 2 Run 2 Run 2 Run 2 $$4 + 4f$$ rounds 4 + 2f rounds 4 + 2f rounds Key exchange to establish shared keys - Key exchange to establish shared keys - Send bitstrings instead of single bits - Key exchange to establish shared keys - Send bitstrings instead of single bits - DC-nets computes sum, but should compute set of messages - Key exchange to establish shared keys - Send bitstrings instead of single bits - DC-nets computes sum, but should compute set of messages - Often: Use "slots" and perform slot reservation | Run 1 | KE | CM | DC | SK | | | | | | |---------|----|----|----|----|----------|--|--|--|--| | Run 2 | | | KE | CM | DC
RV | | | | | | Run 3 | | | | | | | | | | | (Run 4) | | | | | | | | | | 4 + 2f rounds