

ValueShuffle: Mixing Confidential Transactions

Tim Ruffing
@real_or_random

Pedro Moreno-Sanchez @pedrorechez

Bitlodine [Spagnuolo, Maggi, Zanero 2013]

Bitlodine [Spagnuolo, Maggi, Zanero 2013]

Bitlodine [Spagnuolo, Maggi, Zanero 2013]

CoinJoin

	Input	Output	
B	A: 1.0 BTC	C': 1.0 BTC	B
	B: 1.0 BTC	A': 1.0 BTC	B
B	C: 1.0 BTC	B': 1.0 BTC	8

CoinJoin

			Mixed list of
	Input	Output	fresh addresses
B	A: 1.0 BTC	C' 1.0 BTC	
	B: 1.0 BTC	A' 1.0 BTC	
B	C: 1.0 BTC	B' 1.0 BTC	

CoinJoin

DiceMix: An Efficient P2P Mixing Protocol

Tim Ruffing, Pedro Moreno-Sanchez, Aniket Kate. NDSS 2017

A'

Confirmation

 Peers agree on the output and sign it

Mix

B'

D'

R - C'

C'

 \sim D

A'

Confirmation

 Peers agree on the output and sign it

P2P Trust model

 No mutual trust, no thirdparty anonymity routers

Mix

Mix C'

A'

Confirmation

 Peers agree on the output and sign it

- No mutual trust, no thirdparty anonymity routers
- Bulletin board for communication, no trust

Confirmation

 Peers agree on the output and sign it

- No mutual trust, no thirdparty anonymity routers
- Bulletin board for communication, no trust

Confirmation

 Peers agree on the output and sign it

- No mutual trust, no thirdparty anonymity routers
- Bulletin board for communication, no trust
- Anoymity set is the set of honest users

Confirmation

 Peers agree on the output and sign it

- No mutual trust, no thirdparty anonymity routers
- Bulletin board for communication, no trust
- Anoymity set is the set of honest users
- Protocol must terminate in the presence of malicious users

Goal:

Kick out the disrupting user and start from scratch.

?

Kick out the disrupting user and start from scratch.

Problem:

Anonymity

?

Handling Disruptions

Handling Disruptions

IN CASE OF DISRUPTION **BREAK ANONYMITY**

Generate fresh output address

Possible because addresses are discardable

Discardability in P2P Mixing

Discardability in P2P Mixing

Discardability in P2P Mixing

Mixing

Why Mixing Sucks: A Play in Three Acts

Bob wants to Mix Coins

	Input	Output	
B	A: 1.0 BTC	C': 1.0 BTC	B
	B: 1.2 BTC	A': 1.0 BTC	B
B	C: 1.0 BTC	B': 1.2 BTC	8

	Input	Output	
B	A: 1.0 BTC	C': 1.0 BTC	B
	B: 1.2 BTC	A': 1.0 BTC	B
B	C: 1.0 BTC	B': 1.0 BTC	8
		B": 0.2 BTC	

	Input	Output		
B	A: 1.0 BTC	C': 1.0 BTC	B	
	B: 1.2 BTC	A': 1.0 BTC	B	What to do
B	C: 1.0 BTC	B': 1.0 BTC		with the change?
		B": 0.2 BTC	8	

	Input	Output	
B	A: 1.0 BTC	C': 1.0 BTC	B
	B: 1.2 BTC	A': 1.0 BTC	B
B	C: 1.0 BTC	R: 0.5 BTC	
		B': 0.5 BTC	8
		B": 0.2 BTC	8

	Input	Output	
B	A: 1.0 BTC	C': 1.0 BTC	B
	B: 1.2 BTC	A': 1.0 BTC	B
B	C: 1.0 BTC	R: 0.5 BTC	
		B': 0.5 BTC	
		B": 0.2 BTC	

Bob's message in P2P mixing protocol: (B', 0.5)

Bob's message in P2P mixing protocol: (B', 0.5)

	Input	Output			Input	Output	
B	A: 1.0 BTC	C': 1.0 BTC	B		B': 1.0 BTC	R: 0.5 BTC	
	B: 1.2 BTC	A': 1.0 BTC	B			B''': 0.5 BTC	8
B	C: 1.0 BTC	B': 1.0 BTC	8 —	J			
		B": 0.2 BTC	8				

	Input	Output			Input	Output	
B	A: 1.0 BTC	C': 1.0 BTC	B		B': 1.0 BTC	R: 0.5 BTC	
	B: 1.2 BTC	A': 1.0 BTC	B			B''': 0.5 BTC	8
B	C: 1.0 BTC	B': 1.0 BTC	8 —	J			
		B": 0.2 BTC					
				Inee	ed two transa	ctions?!	

	Input	Output			Input	Output	
	A: 1.0 BTC	C': 1.0 BTC		-8	B': 1.0 BTC	R: 0.5 BTC	
	B: 1.2 BTC	A': 1.0 BTC	B			B''': 0.5 BTC	8
B	C: 1.0 BTC	B': 1.0 BTC	8 —				
		B": 0.2 BTC					

	Input	Output			Input	Output	
B	A: 1.0 BTC	C': 1.0 BTC	B	— 8	B': 1.0 BTC	R: 0.5 BTC	
	B: 1.2 BTC	A': 1.0 BTC	B			B''': 0.5 BTC	
B	C: 1.0 BTC	B': 1.0 BTC	8 —				
		B": 0.2 BTC	8 —		Input	Output	
					B''': 0.5 BTC	S: 0.7 BTC	
			L	<u> </u>	B": 0.2 BTC		

	Input	Output		Input	Output
	A: 1.0 BTC	C': 1.0 BTC		B': 1.0 BTC	R: 0.5 BTC
3	B: 1.2 BTC	A': 1.0 BTC			B''': 0.5 BTC
	C: 1.0 BTC	B': 1.0 BTC			
		B": 0.2 BTC	8 —	Input	Output
				B''': 0.5 BTC	S: 0.7 BTC
				B": 0.2 BTC	

Input	Output		Input	Output
A: 1.0 BTC	C': 1.0 BTC		B': 1.0 BTC	R: 0.5 BTC
B: 1.2 BTC	A': 1.0 BTC			B''': 0.5 BTC
C: 1.0 BTC	B': 1.0 BTC			
	B": 0.2 BTC	8 —	Input	Output
			B''': 0.5 BTC	S: 0.7 BTC
			B": 0.2 BTC	

Input	Output		Input	Output
A: 1.0 BTC	C': 1.0 BTC		B': 1.0 BTC	R: 0.5 BTC
B: 1.2 BTC	A': 1.0 BTC			B''': 0.5 BTC
C: 1.0 BTC	B': 1.0 BTC			
	B": 0.2 BTC		Input	Output
		L 8	B''': 0.5 BTC	S: 0.7 BTC
			B": 0.2 BTC	

Input	Output			Input	Output	
A: 1.0 BTC	C': 1.0 BTC			B': 1.0 BTC	R: 0.5 BTC	
B: 1.2 BTC	A': 1.0 BTC				B''': 0.5 BTC	8 -
C: 1.0 BTC	B': 1.0 BTC		J			
	B": 0.2 BTC	8 -	1	Input	Output	
				B''': 0.5 BTC	S: 0.7 BTC	
				B": 0.2 BTC		

Input	Output		Input	Output	
A: 1.0 BTC	C': 1.0 BTC		B': 1.0 BTC	R: 0.5 BTC	
B: 1.2 BTC	A': 1.0 BTC			B''': 0.5 BTC	8 -
C: 1.0 BTC	B': 1.0 BTC	l			
	B": 0.2 BTC		Input	Output	
		L 8	B''': 0.5 BTC	S: 0.7 BTC	
		_ 8	B": 0.2 BTC		

	Input	Output
	A: 1.0 BTC	C': 1.0 BTC
	B: 1.2 BTC	A': 1.0 BTC
	C: 1.0 BTC	B': 1.0 BTC
		B": 0.2 BTC

Input	Output		Input	Output
A: 1.0 BTC	C': 1.0 BTC		B': 1.0 BTC	R: 0.5 BTC
B: 1.2 BTC	A': 1.0 BTC			B''': 0.5 BTC
C: 1.0 BTC	B': 1.0 BTC	8 —		
	B": 0.2 BTC		Input	Output
			B"": 0.5 BTC	S: 0.7 BTC
Dam	n it!		B": 0.2 BTC	

Many Problems

Root of all evil: transacted values are public

Many Problems

Root of all evil: transacted values are public

$$1.0 + 0.2 = 1.2$$

$$0.5 + 0.5 = 1.0$$

ValueShuffle

Let's Add Confidential Transactions

$$c = \operatorname{Com}(x, r)$$

$$c = \operatorname{Com}(x, r)$$

Hiding: given just c, you don't learn anything about x

$$c = \operatorname{Com}(x, r)$$

- Hiding: given just c, you don't learn anything about x
- Binding: you cannot open c to anything but x (and create money)

$$c = \operatorname{Com}(x, r)$$

- Hiding: given just c, you don't learn anything about x
- Binding: you cannot open c to anything but x (and create money)

$$Com(x_1, r_1) + Com(x_2, r_2) = Com(x_1 + x_2, r_1 + r_2)$$

Input	Output
A: Com(5.4, r _{in,A})	C': Com(0.1, r _{out,C'})
B: Com(1.2, r _{in,B})	B': Com(0.7, <i>r</i> _{out,B'})
C: Com(0.3, r _{in,C})	RA: Com(0.4, r _{out,A})
	RC: Com(0.2, $r_{\text{out,C}}$)
	A': Com(5.0, <i>r</i> _{out,A'})
	RB: Com(0.5, $r_{\text{out,B}}$)

	Input	Output	
B	A: Com(5.4, r _{in,A})	C': Com(0.1, r _{out,C'})	B
	B: Com(1.2, <i>r</i> _{in,B})	B': Com(0.7, <i>r</i> _{out,B'})	8
B	C: Com(0.3, r _{in,C})	RA: Com(0.4, r _{out,A})	
		RC: Com(0.2, $r_{\text{out,C}}$)	
		A': Com(5.0, r _{out,A'})	(A)
		RB: Com $(0.5, r_{\text{out,B}})$	

Com(0, r)

	Input	Output	
B	A: Com(5.4, r _{in,A})	C': Com(0.1, r _{out,C'})	B
	B: Com(1.2, <i>r</i> _{in,B})	B': Com(0.7, r _{out,B'})	
B	C: Com(0.3, r _{in,C})	RA: Com(0.4, r _{out,A})	
Reveal excess value pen the sum commitment		RC: Com(0.2, r _{out,C})	
		A': Com(5.0, r _{out,A'})	B
		RB: Com(0.5, $r_{\text{out,B}}$)	

Com(0, r)

	Input	Output	
	A: Com(5.4, r _{in,A})	C': Com(0.1, r _{out,C'})	B
	B: Com(1.2, <i>r</i> _{in,B})	B': Com(0.7, r _{out,B'})	
	C: Com(0.3, r _{in,C})	RA: Com(0.4, r _{out,A})	
Reve	eal excess value	RC: Com(0.2, r _{out,C})	
to open the sum commitment		A': Com(5.0, r _{out,A'})	B
		RB: Com $(0.5, r_{\text{out,B}})$	

$$Com(0, r) = Com(0, 0)$$

Input	Output
A: Com(5.4, r _{in,A})	C': Com(0.1, r _{out,C'})
B: Com(1.2, r _{in,B})	B': Com(0.7, <i>r</i> _{out,B'})
C: Com(0.3, r _{in,C})	RA: Com(0.4, r _{out,A})
	RC: Com(0.2, $r_{\text{out,C}}$)
	A': Com(5.0, r _{out,A'})
	RB: Com $(0.5, r_{\text{out,B}})$

Input	Output
A: Com(5.4, r _{in,A})	C': Com(0.1, r _{out,C'})
B: Com(1.2, r _{in,B})	B': Com(0.7, r _{out,B'})
C: Com(0.3, r _{in,C})	RA: Com(0.4, r _{out,A})
	RC: Com(0.2, r _{out,C})
	A': Com(5.0, r _{out,A'})
	RB: Com(0.5, $r_{\text{out,B}}$)

CoinJoin With Confidential Transactions

	Input	Output	
B	A: Com(5.4, r _{in,A})	C': Com(0.1, r _{out,C'})	B
	B: Com(1.2, $r_{\text{in,B}}$)	B': Com(0.7, $r_{\text{out,B'}}$)	8
B	C: Com(0.3, r _{in,C})	RA: Com(0.4, r _{out,A})	
		RC: Com(0.2, $r_{\text{out,C}}$)	
		A': Com(5.0, r _{out,A'})	B
		RB: Com(0.5, $r_{\text{out,B}}$)	

We need to compute the sum *r* such that individual summands are not revealed.

CoinJoin With Confidential Transactions

Input	Output	
A: Com(5.4, r _{in,A})	C': Com(0.1, r _{out,C'})	
B: Com(1.2, $r_{in,B}$) B': Com(0.7, r_{out}		
C: Com(0.3, $r_{in,C}$) RA: Com(0.4, r_{out}		
	RC: Com(0.2, $r_{\text{out,C}}$)	
	A': Com(5.0, <i>r</i> _{out,A'})	
	RB: Com(0.5, $r_{\text{out,B}}$)	
	F: 0.0, - r	

CoinJoin With Confidential Transactions

	Input	Output	
B	A: Com(5.4, r _{in,A})	C': Com(0.1, r _{out,C'})	B
	B: Com(1.2, r _{in,B})	B': Com(0.7, r _{out,B'})	8
B	C: Com(0.3, r _{in,C})	RA: Com(0.4, r _{out,A})	
		RC: Com(0.2, $r_{\text{out,C}}$)	
		A': Com(5.0, r _{out,A'})	
		RB: Com(0.5, $r_{\text{out,B}}$)	
		F: 0.0, - <i>r</i>	

Com(0, 0)

ValueShuffle

Input	Output	
A: Com(5.4, r _{in,A})	C': Com(0.1, r _{out,C'})	
B: Com(1.2, r _{in,B})	B': Com(0.7, r _{out,B'})	
C: Com(0.3, r _{in,C})	RA: Com(0.4, r _{out,A})	
	RC: Com(0.2, r _{out,C})	
	A': Com(5.0, r _{out,A'})	
	RB: Com(0.5, r _{out,B})	

	Input	Output	
B	A: Com(5.4, r _{in,A})	C': Com(0.1, r _{out,C'})	B
	B: Com(1.2, r _{in,B})	B': Com(0.7, r _{out,B'})	8
B	C: Com(0.3, r _{in,C})	RA: Com(0.4, r _{out,A})	
		RC: Com(0.2, r _{out,C})	
		A': Com(5.0, r _{out,A'})	B
		RB: Com(0.5, r _{out,B})	

Bob's messages in mixing protocol: (B', Com(0.7, $r_{out,B'}$), $aux_{B'}$) and (RB, Com(0.5, $r_{out,B}$), aux_{RB})

	Input	Output	
	A: Com(5.4, r _{in,A})	C': Com(0.1, r _{out,C'})	B
	B: Com(1.2, r _{in,B})	B': Com(0.7, r _{out,B'})	
	C: Com(0.3, r _{in,C})	RA: Com(0.4, r _{out,A})	
		RC: Com(0.2, r _{out,C})	
Discardable chan	ge address	A': Com(5.0, r _{out,A'})	B
		RB: Com(0.5, r _{out,B})	

Bob's messages in mixing protocol:

(B', Com(0.7, $r_{out,B'}$), $aux_{B'}$) and (RB, Com(0.5, $r_{out,B}$), aux_{RB})

	Input	Output	
B	A: Com(5.4, r _{in,A})	C': Com(0.1, r _{out,C'})	
	B: Com(1.2, r _{in,B})	B': Com(0.7, r _{out,B'})	(
B	C: Com(0.3, r _{in,C})	RA: Com(0.4, r _{out,A})	
		RC: Com(0.2, r _{out,C})	
<u> </u>	1.1.1		

Discardable commitments: Com(5.0, r_{out,A'})

RB: $Com(0.5, r_{out,B})$

lob's messages in mixing protocol:

(B', Com(0.7, $r_{out,B'}$), aux_{B'}) and (RB, Com(0.5, $r_{out,B}$), aux_{RB})

	Input	Output	
B	A: Com(5.4, r _{in,A})	C': Com(0.1, r _{out,C'})	B
	B: Com(1.2, r _{in,B})	B': Com(0.7, r _{out,B'})	8
B	C: Com(0.3, r _{in,C})	RA: Com(0.4, r _{out,A})	
	Discardable aux info (range proofs) RB: Com(c. 3)		

Bob's mess ges in mixing protocol:

(B', Com(0.7, $r_{out,B'}$), $aux_{B'}$) and (RB, Com(0.5, $r_{out,B}$), aux_{RB})

	Input	Output	
B	A: Com(5.4, r _{in,A})	C': Com(0.1, r _{out,C'})	B
	B: Com(1.2, r _{in,B})	B': Com(0.7, r _{out,B'})	
B	C: Com(0.3, r _{in,C})	RA: Com(0.4, r _{out,A})	
		$RC \cdot Com(0.2 r_{out}c)$	
		Discardable recipient address	
		(BIP 32, stealth addresses,)	
		RB: (, r _{out,B})	

Bob's messages in mixing protocol: (B', Com(0.7, $r_{out,B'}$), $aux_{B'}$) and (RB, Com(0.5, $r_{out,B}$), aux_{RB})

No problems with change addresses

No problems with change addresses

No need for two transactions to spend

No problems with change addresses

No need for two transactions to spend

No foot-cannon when spending change

No problems with change addresses

No need for two transactions to spend

No foot-cannon when spending change

No need to have the same amounts

No problems with change addresses

No need for two transactions to spend

No foot-cannon when spending change

No need to have the same amounts

Great synergy: value privacy and unlinkability

CoinJoin transaction smaller than set of individual transactions

- CoinJoin transaction smaller than set of individual transactions
- Really takes off with signature aggregation (e.g. Bellare-Neven)

- CoinJoin transaction smaller than set of individual transactions
- Really takes off with signature aggregation (e.g. Bellare-Neven)
- We save
 - Precious space in the blockchain
 - Verification time

- CoinJoin transaction smaller than set of individual transactions
- Really takes off with signature aggregation (e.g. Bellare-Neven)
- We save
 - Precious space in the blockchain
 - Verification time
- User saves fees!

Variants of DiceMix

DiceMix

- 4 + 2*f* communication rounds
- Some heavy computation if messages are large (Polynomial factorization in finite fields)
- Variant in the paper

Variants of DiceMix

DiceMix

- 4 + 2*f* communication rounds
- Some heavy computation if messages are large (Polynomial factorization in finite fields)
- Variant in the paper

DiceMix Light

- 5 + 3*f* communication rounds
- No heavy computation
- Simpler protocol
- https://github.com/ElementsProject/dicemix

Banning disruptive users

- Banning disruptive users
 - Naive approach: Server keeps a ban list of disruptive users (= UTXOs)

- Banning disruptive users
 - Naive approach: Server keeps a ban list of disruptive users (= UTXOs)
 - Current idea: Just rate limiting (*n* tries per UTXO) like JoinMarket

- Banning disruptive users
 - Naive approach: Server keeps a ban list of disruptive users (= UTXOs)
 - Current idea: Just rate limiting (*n* tries per UTXO) like JoinMarket
 - Public key pk gives you n tokens

- Banning disruptive users
 - Naive approach: Server keeps a ban list of disruptive users (= UTXOs)
 - Current idea: Just rate limiting (*n* tries per UTXO) like JoinMarket
 - Public key pk gives you n tokens
 - Users need to add a token to the ban list when starting a protocol

- Banning disruptive users
 - Naive approach: Server keeps a ban list of disruptive users (= UTXOs)
 - Current idea: Just rate limiting (*n* tries per UTXO) like JoinMarket
 - Public key pk gives you n tokens
 - Users need to add a token to the ban list when starting a protocol
- Double-spending

- Banning disruptive users
 - Naive approach: Server keeps a ban list of disruptive users (= UTXOs)
 - Current idea: Just rate limiting (*n* tries per UTXO) like JoinMarket
 - Public key pk gives you n tokens
 - Users need to add a token to the ban list when starting a protocol
- Double-spending
- Availability of bulletin board

- Banning disruptive users
 - Naive approach: Server keeps a ban list of disruptive users (= UTXOs)
 - Current idea: Just rate limiting (*n* tries per UTXO) like JoinMarket
 - Public key pk gives you n tokens
 - Users need to add a token to the ban list when starting a protocol
- Double-spending
- Availability of bulletin board
- Other issues?

ValueShuffle in the Bitcoin Privacy Landscape

ValueShuffle in the Bitcoin Privacy Landscape

Flowchart of ValueShuffle

4 + 2*f* rounds (*f* disrupting peers)

Architecture

peer

Architecture

peer

peer

Architecture

Comparison with Related Work

	Anonymity set	Mixing overhead	Non- interactive	Pruning
ValueShuffle	Moderate (~ 50)	off-chain	no	yes
Monero / Ring-CT	Small (~ 10)	on-chain	yes	no
TumbleBit	Large (~ 800)	4 tx per mixing (classic mode)	yes	yes
Zcash	Full	?	yes	no

$$M = \{m_1, m_2, m_3, m_4\}$$

$$M = \{m_1, m_2, m_3, m_4\}$$

 $M' = \{m_1, m_3\}$

$$M = \{m_1, m_2, m_3, m_4\}$$

 $M' = \{m_1, m_3\}$
 $M \setminus M' = \{m_2, m_4\}$
 m_4 is attacker's msg.

$$M = \{m_1, m_2, m_3, m_4\}$$

 $M' = \{m_1, m_3\}$
 $M \setminus M' = \{m_2, m_4\}$
 m_4 is attacker's msg.
 m_2 is Bob's msg.

$$M = \{m_1, m_2, m_3, m_4\}$$

 $M' = \{m_1, m_3\}$
 $M \setminus M' = \{m_2, m_4\}$
 m_4 is attacker's msg.
 m_2 is Bob's msg.

Practical attack against Dissent protocol [CCS 2013]!

DiceMix

A Practical P2P Mixing Protocol based on DC-nets

Mixnet run by all peers

Mixnet run by all peers

 Dissent (shuffle protocol) [CCS 2010], CoinShuffle [ESORICS 2014]

Mixnet run by all peers

• Dissent (shuffle protocol) [CCS 2010], CoinShuffle [ESORICS 2014]

Mixnet run by all peers

- Dissent (shuffle protocol) [CCS 2010], CoinShuffle [ESORICS 2014]
- O(*n*) rounds in optimistic case

Mixnet run by all peers

- Dissent (shuffle protocol) [CCS 2010], CoinShuffle [ESORICS 2014]
- O(n) rounds in optimistic case
- O(nf) rounds for f malicious peers

Mixnet run by all peers

- Dissent (shuffle protocol) [CCS 2010], CoinShuffle [ESORICS 2014]
- O(n) rounds in optimistic case
- O(nf) rounds for f malicious peers

Mixnet solution does not scale!

Dining cryptographers' networks (DC-nets)

• Hope for O(1) rounds in the optimistic case

- Hope for O(1) rounds in the optimistic case
- Easy to disrupt

- Hope for O(1) rounds in the optimistic case
- Easy to disrupt
- All approaches to solve disruption problem suffer from drawbacks

- Hope for O(1) rounds in the optimistic case
- Easy to disrupt
- All approaches to solve disruption problem suffer from drawbacks
- Golle and Juels [EUROCRYPT 2004]: Honest majority

Dining cryptographers' networks (DC-nets)

- Hope for O(1) rounds in the optimistic case
- Easy to disrupt
- All approaches to solve disruption problem suffer from drawbacks
- Golle and Juels [EUROCRYPT 2004]: Honest majority

No practical P2P mixing protocol based on DC-nets!

User 1:

 m_1

User 2:

 m_2

R

User 3:

 m_3

•

User n:

 m_n

$$\sum_{i=1}^{n} m_i$$

•	$\sum_{i=1}^{n} m_i$	$\sum_{i=1}^{n} m_i^2$	$\sum_{i=1}^{n} m_i^3$	•••	$\sum_{i=1}^{n} m_i^n$
User n:	m_n	m_n^2	m_n^3	•••	m_n^n
User 3:	m_3	m_3^2	m_3^3	•••	m_3^n
User 2:	m_2	m_2^2	m_{2}^{3}	•••	m_2^n
User 1:	m_1	m_1^2	m_1^3	• • •	m_1^n

User 1: User 2: User 3: User n:	m_1 m_2 m_3 \vdots m_n	m_{1}^{2} m_{2}^{2} m_{3}^{2} \vdots m_{n}^{2}	m_{1}^{3} m_{2}^{3} m_{3}^{3} \vdots m_{n}^{3}	•••	m_1^n m_2^n m_3^n \vdots m_n^n
	$\sum_{i=1}^{n} m_i$	$\sum_{i=1}^{n} m_i^2$	$\sum_{i=1}^{n} m_i^3$	•••	$\sum_{i=1}^{n} m_i^n$

Newton's identities tell us the coefficients of the polynomial $\prod_{i=1}^{n} (x-m_i)$.

•	$\sum_{i=1}^{n} m_i$	$\sum_{i=1}^{n} m_i^2$	$\sum_{i=1}^{n} m_i^3$	•••	$\sum_{i=1}^{n} m_i^n$
User n:	\vdots m_n	m_n^2	m_n^3	•••	m_n^n
User 3:	m_3	m_3^2	m_3^3	•••	m_3^n
User 2:	m_2	m_2^2	m_{2}^{3}	• • •	m_2^n
User 1:	m_1	m_1^2	m_1^3	• • •	m_1^n

Newton's identities tell us the coefficients of the polynomial $\prod_{i=1}^{n} (x-m_i)$. \rightarrow Polynomial factorization recovers the messages.

Disruption

User 1:	$m_1^{}$	m_1^2	m_1^3	• • •	m_1^n
User 2:	m_1	m_2^2	$m_{1}^{3} \ m_{2}^{3} \ m_{3}^{3}$	•••	m_2^n
User 3:	m_3	m_3^2	m_3^3	•••	m_3^n
	•	2	3	•••	n
User n:	m_n	m_n^2	m_n^3	•••	m_n^n
•					
				•••	

Disruption

Disruption

Malicious user stays anonymous!

Generate fresh message

Run 2

Run 2

Run 2

Run 2

$$4 + 4f$$
 rounds

4 + 2f rounds

4 + 2f rounds

Key exchange to establish shared keys

- Key exchange to establish shared keys
- Send bitstrings instead of single bits

- Key exchange to establish shared keys
- Send bitstrings instead of single bits
- DC-nets computes sum, but should compute set of messages

- Key exchange to establish shared keys
- Send bitstrings instead of single bits
- DC-nets computes sum, but should compute set of messages
 - Often: Use "slots" and perform slot reservation

Run 1	KE	CM	DC	SK					
Run 2			KE	CM	DC RV				
Run 3									
(Run 4)									

4 + 2f rounds