
Graphene: A New Protocol
for Block Propagation
Using Set Reconciliation

A. Pinar Ozisik
George Bissias

Gavin Andresen
Amir Houmansadr

Brian Neil Levine

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Problem Definition
• This presentation is focused on relaying information quickly to a neighbor.

• on the fast Relay Network or the p2p network.

• It’s about avoiding sending a lot of data between peers, like so:

Alice Bob

has
block

wants
block

mempool

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Problem Definition
• This presentation is focused on relaying information quickly to a neighbor.

• on the fast Relay Network or the p2p network.

• It’s about avoiding sending a lot of data between peers, like so:

Alice Bob

inv
has

block
wants
block

mempool

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Problem Definition
• This presentation is focused on relaying information quickly to a neighbor.

• on the fast Relay Network or the p2p network.

• It’s about avoiding sending a lot of data between peers, like so:

Alice Bob

getdata
inv

has
block

wants
block

mempool

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Problem Definition
• This presentation is focused on relaying information quickly to a neighbor.

• on the fast Relay Network or the p2p network.

• It’s about avoiding sending a lot of data between peers, like so:

Alice Bob
header, full txns

getdata
inv

has
block

wants
block

mempool

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Problem Definition
• This presentation is focused on relaying information quickly to a neighbor.

• on the fast Relay Network or the p2p network.

• It’s about avoiding sending a lot of data between peers, like so:

Alice Bob

inv
getdata

header, full txns

has
block

wants
block

mempool

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Problem Definition

• Block announcements propagate faster when they are smaller.

• Faster propagation means less orphaning, which means mining is efficient.

• This isn’t a presentation about reducing the size of the stored blockchain.

Alice Bob

inv
getdata

header, full txns

has
block

wants
block

mempool

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Results
• Graphene’s block announcements are ⅒ the size of current methods.

• No increase in roundtrip time.
• Not a significant use of storage or CPU.

• Combines two known tools from set reconciliation literature in a nifty way.
• Bloom Filters and IBLTs

• Why does it work? We are optimizing Bitcoin’s special case:
• Everyone needs to know everything.
• Blocks are comprised of transactions that everyone should have heard already.

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Overview
• A series of protocols:

• Compact Blocks
• Xtreme Thin Blocks
• Soot [fake]
• IBLTs
• Graphene

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Protocol 1: Compact Blocks

• We don’t need to send the full transactions.

• We can send just the 2xSHA256 (32-byte) transaction IDs.

• And we only need the first 5 or 6 bytes. Odds of mistake are 1 in a trillion.

Alice Bob

inv
getdatahas

block
wants
block

BIP 152  
Matt Corallo

mempool

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Protocol 1: Compact Blocks

• We don’t need to send the full transactions.

• We can send just the 2xSHA256 (32-byte) transaction IDs.

• And we only need the first 5 or 6 bytes. Odds of mistake are 1 in a trillion.

Alice Bob

inv
getdatahas

block
wants
block

BIP 152  
Matt Corallo

mempoolheader, txnIDs

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Protocol 1: Compact Blocks

• We don’t need to send the full transactions.

• We can send just the 2xSHA256 (32-byte) transaction IDs.

• And we only need the first 5 or 6 bytes. Odds of mistake are 1 in a trillion

• Now a 1MB block with can be expressed in 80+4200*5 = 21KB
• An 8MB block reduces to 80+4200*8*5 = 164KB

Alice Bob
header, txnIDs

getdata
inv

has
block

wants
block

mempool

BIP 152  
Matt Corallo

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Evaluation
• Linear growth with the

number of transactions
included in the block.

• Size is independent of
mempool.

●●●
●

●

●

●

●

●

0 8000 16000 24000 32000 40000

0
20
40
60
80

100
120
140
160
180
200

0 1 2 3 4 5 6 7 8 9 10

txns

Original Block Size (MB)

R
es

ul
tin

g
Bl

oc
k

(K
B)

Protocol ●● Compact Blocks

●●●
●

●

●

●

●

●

0 8000 16000 24000 32000 40000

0
20
40
60
80

100
120
140
160
180
200

0 1 2 3 4 5 6 7 8 9 10

txns

Original Block Size (MB)

R
es

ul
tin

g
Bl

oc
k

(K
B)

Protocol ●● Compact Blocks

https://bitcoincore.org/en/2016/06/07/compact-blocks-faq/

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Protocol 2: Bloom Filters
• Can we do better? Yes!

• Our neighbors already have these transactions IDs.

• They are likely only missing a few.

• Alice can each express the set of transactions in the block or her mempool 
as a Bloom Filter.

• Bob could do the same thing!

• Bloom filters allow us to quickly check if an item is a member of a set.

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Bloom Filter: Insertion
 [0] [1] [2] [3] [4] [5] [6]

0 0 0 0 0 0 0

B. Bloom: Space/Time Trade-offs in Hash Coding with Allowable Errors.  
Communications of the ACM 13(7), 422–426 (Jul 1970)

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Bloom Filter: Insertion
 [0] [1] [2] [3] [4] [5] [6]

insert: txn1
H1(txn1) = 1  
H2(txn1) = 4

0 0 0 0 0 0 0

B. Bloom: Space/Time Trade-offs in Hash Coding with Allowable Errors.  
Communications of the ACM 13(7), 422–426 (Jul 1970)

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Bloom Filter: Insertion
 [0] [1] [2] [3] [4] [5] [6]

insert: txn1
H1(txn1) = 1  
H2(txn1) = 4

0 0 0 0 0 0 01

B. Bloom: Space/Time Trade-offs in Hash Coding with Allowable Errors.  
Communications of the ACM 13(7), 422–426 (Jul 1970)

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Bloom Filter: Insertion
 [0] [1] [2] [3] [4] [5] [6]

insert: txn1
H1(txn1) = 1  
H2(txn1) = 4

0 0 0 0 0 0 01 1

B. Bloom: Space/Time Trade-offs in Hash Coding with Allowable Errors.  
Communications of the ACM 13(7), 422–426 (Jul 1970)

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Bloom Filter: Insertion
 [0] [1] [2] [3] [4] [5] [6]

insert: txn1
H1(txn1) = 1  
H2(txn1) = 4

0 0 0 0 0 0 01 1

B. Bloom: Space/Time Trade-offs in Hash Coding with Allowable Errors.  
Communications of the ACM 13(7), 422–426 (Jul 1970)

insert: txn2
H1(txn2) = 0  
H2(txn2) = 4

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Bloom Filter: Insertion
 [0] [1] [2] [3] [4] [5] [6]

insert: txn1
H1(txn1) = 1  
H2(txn1) = 4

0 0 0 0 0 0 01 1

B. Bloom: Space/Time Trade-offs in Hash Coding with Allowable Errors.  
Communications of the ACM 13(7), 422–426 (Jul 1970)

insert: txn2
H1(txn2) = 0  
H2(txn2) = 4

1

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Bloom Filter: Insertion
 [0] [1] [2] [3] [4] [5] [6]

insert: txn1
H1(txn1) = 1  
H2(txn1) = 4

0 0 0 0 0 0 01 1

B. Bloom: Space/Time Trade-offs in Hash Coding with Allowable Errors.  
Communications of the ACM 13(7), 422–426 (Jul 1970)

insert: txn2
H1(txn2) = 0  
H2(txn2) = 4

1 1

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

1

Bloom Filters: Check
 [0] [1] [2] [3] [4] [5] [6]

 0 0 0 011

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

1

Bloom Filters: Check
 [0] [1] [2] [3] [4] [5] [6]

Is txn1 in the set?
H1(txn1) = 1, H2(txn1) = 4

cell 1 = 1
cell 4 = 1

Yes!

 0 0 0 011

True Positive

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

1

Bloom Filters: Check
 [0] [1] [2] [3] [4] [5] [6]

Is txn1 in the set?
H1(txn1) = 1, H2(txn1) = 4

cell 1 = 1
cell 4 = 1

Yes!

 0 0 0 011

Is txn3 in the set?
H1(txn3) = 1, H2(txn3) = 5

cell 1 = 1
cell 5 = 0

No!
True Positive True Negative

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

1

Bloom Filters: Check
 [0] [1] [2] [3] [4] [5] [6]

Is txn1 in the set?
H1(txn1) = 1, H2(txn1) = 4

cell 1 = 1
cell 4 = 1

Yes!

 0 0 0 011

Is txn3 in the set?
H1(txn3) = 1, H2(txn3) = 5

cell 1 = 1
cell 5 = 0

No!

Is txn4 in the set?
H1(txn4) = 0, H2(txn4) = 1

cell 0 = 1
cell 1 = 1

Yes!
True Positive True Negative False Positive

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

1

Bloom Filters: Check
 [0] [1] [2] [3] [4] [5] [6]

Is txn1 in the set?
H1(txn1) = 1, H2(txn1) = 4

cell 1 = 1
cell 4 = 1

Yes!

 0 0 0 011

Is txn3 in the set?
H1(txn3) = 1, H2(txn3) = 5

cell 1 = 1
cell 5 = 0

No!

Is txn4 in the set?
H1(txn4) = 0, H2(txn4) = 1

cell 0 = 1
cell 1 = 1

Yes!
True Positive True Negative False Positive

False Negatives are not possible.

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

1

Bloom Filters: Check
 [0] [1] [2] [3] [4] [5] [6]

Is txn1 in the set?
H1(txn1) = 1, H2(txn1) = 4

cell 1 = 1
cell 4 = 1

Yes!

 0 0 0 011

Is txn3 in the set?
H1(txn3) = 1, H2(txn3) = 5

cell 1 = 1
cell 5 = 0

No!

Is txn4 in the set?
H1(txn4) = 0, H2(txn4) = 1

cell 0 = 1
cell 1 = 1

Yes!
True Positive True Negative False Positive

False Negatives are not possible.

The False Positive Rate is tunable: More bits will lower the FPR.

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Protocol 2: Xtreme Thinblocks

• We are sending all txnIDs and we are sending a Bloom Filter.

• This is more data across the network than Compact Blocks.

Alice

has
block

Bob

wants
block

mempool

Peter Tschipper

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Protocol 2: Xtreme Thinblocks

• We are sending all txnIDs and we are sending a Bloom Filter.

• This is more data across the network than Compact Blocks.

inv

Alice

has
block

Bob

wants
block

mempool

Peter Tschipper

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Protocol 2: Xtreme Thinblocks

• We are sending all txnIDs and we are sending a Bloom Filter.

• This is more data across the network than Compact Blocks.

getdata, Bloom(mempool)
inv

Alice

has
block

Bob

wants
block

mempool

Peter Tschipper

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Protocol 2: Xtreme Thinblocks

• We are sending all txnIDs and we are sending a Bloom Filter.

• This is more data across the network than Compact Blocks.

header, txnIDs

getdata, Bloom(mempool)
inv

Alice

has
block

Bob

wants
block

mempool

Peter Tschipper

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Protocol 3: Soot

• Soot is not a real protocol…

• Send INV for each TXNs in the block
ahead of the block INV.

• if they haven’t already been sent or
received.

Alice

has
block

Bob

wants
block

mempool

• We need a low FPR for the
Sender’s Bloom filter.

• Can’t base it on size of the block!

• Let m be the number of transactions
in the mempool.

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Protocol 3: Soot

• Soot is not a real protocol…

• Send INV for each TXNs in the block
ahead of the block INV.

• if they haven’t already been sent or
received.

Alice

has
block

Bob

wants
block

(prioritize TXN inv’s)

mempool

• We need a low FPR for the
Sender’s Bloom filter.

• Can’t base it on size of the block!

• Let m be the number of transactions
in the mempool.

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Protocol 3: Soot

• Soot is not a real protocol…

• Send INV for each TXNs in the block
ahead of the block INV.

• if they haven’t already been sent or
received.

inv

Alice

has
block

Bob

wants
block

(prioritize TXN inv’s)

mempool

• We need a low FPR for the
Sender’s Bloom filter.

• Can’t base it on size of the block!

• Let m be the number of transactions
in the mempool.

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Protocol 3: Soot

• Soot is not a real protocol…

• Send INV for each TXNs in the block
ahead of the block INV.

• if they haven’t already been sent or
received.

getdata, m
inv

Alice

has
block

Bob

wants
block

(prioritize TXN inv’s)

mempool

• We need a low FPR for the
Sender’s Bloom filter.

• Can’t base it on size of the block!

• Let m be the number of transactions
in the mempool.

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Protocol 3: Soot

• Soot is not a real protocol…

• Send INV for each TXNs in the block
ahead of the block INV.

• if they haven’t already been sent or
received.

getdata, m
inv

Alice

has
block

Bob

wants
block

(prioritize TXN inv’s)

mempoolheader, S=Bloom(txnIDs)
fpr=1/m

• We need a low FPR for the
Sender’s Bloom filter.

• Can’t base it on size of the block!

• Let m be the number of transactions
in the mempool.

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Protocol 3: Soot

• Soot is not a real protocol…

• Send INV for each TXNs in the block
ahead of the block INV.

• if they haven’t already been sent or
received.

getdata, m
inv

Alice

has
block

Bob

wants
block

(prioritize TXN inv’s)

mempoolheader, S=Bloom(txnIDs)
fpr=1/m

• We need a low FPR for the
Sender’s Bloom filter.

• Can’t base it on size of the block!

• Let m be the number of transactions
in the mempool.

Block = mempool found in S

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Protocol 3: Soot

Bob

wants
block

mempool
getdata, m

inv
(prioritize TXN inv’s)

Block = mempool found in S
Alice

has
block

header, S=Bloom(txnIDs)
fpr=1/m

• If FPR=1/m, then we expect 1
transaction from mempool to
falsely appear to be in the block.

• Block reconstruction will fail every
block!

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Protocol 3: Soot

• If FPR=1/m, then we expect 1
transaction from mempool to
falsely appear to be in the block.

• Block reconstruction will fail every
block!

• If FPR=1/(100m), once every 100
blocks, the receiver will fail to
reconstruct the block.

• In that case, fall back to Compact
Blocks.

Bob

wants
block

mempool
getdata, m

inv
(prioritize TXN inv’s)

Block = mempool found in S
Alice

has
block

header, S=Bloom(txnIDs)
fpr=1/m

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Performance of 1/(100m) Soot

Performance now depends on size of the mempool.

●●●●
●

●

●

●

●●●●
●

●

●

●

0 8000 16000 24000 32000 40000

0

50

100

150

200

0 1 2 3 4 5 6 7 8 9 10

txns

Original Block Size (MB)

R
es

ul
tin

g
Bl

oc
k

(K
B)

●● 100
1000

10000
100000

Compact Blocks

●●●●
●

●

●

●

●●●●
●

●

●

●

0 8000 16000 24000 32000 40000

0

50

100

150

200

0 1 2 3 4 5 6 7 8 9 10

txns

Original Block Size (MB)

R
es

ul
tin

g
Bl

oc
k

(K
B)

●● 100
1000

10000
100000

Compact Blocks

●●●●
●

●

●

●

●●●●
●

●

●

●

0 8000 16000 24000 32000 40000

0

50

100

150

200

0 1 2 3 4 5 6 7 8 9 10

txns

Original Block Size (MB)

R
es

ul
tin

g
Bl

oc
k

(K
B)

●● 100
1000

10000
100000

Compact Blocks

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Performance of 1/(100m) Soot

Performance now depends on size of the mempool.

●●●●
●

●

●

●

●●●●
●

●

●

●

0 8000 16000 24000 32000 40000

0

50

100

150

200

0 1 2 3 4 5 6 7 8 9 10

txns

Original Block Size (MB)

R
es

ul
tin

g
Bl

oc
k

(K
B)

●● 100
1000

10000
100000

Compact Blocks

●●●●
●

●

●

●

●●●●
●

●

●

●

0 8000 16000 24000 32000 40000

0

50

100

150

200

0 1 2 3 4 5 6 7 8 9 10

txns

Original Block Size (MB)

R
es

ul
tin

g
Bl

oc
k

(K
B)

●● 100
1000

10000
100000

Compact Blocks

●●●●
●

●

●

●

●●●●
●

●

●

●

0 8000 16000 24000 32000 40000

0

50

100

150

200

0 1 2 3 4 5 6 7 8 9 10

txns

Original Block Size (MB)

R
es

ul
tin

g
Bl

oc
k

(K
B)

●● 100
1000

10000
100000

Compact Blocks

●
●

●

●

●

●
●

●

●

●

0
2
4
6
8

10
12
14
16
18
20
22
24
26

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Original Block Size (MB)

R
es

ul
tin

g
Bl

oc
k

(K
B)

●● 100
1000

10000
100000

Compact Blocks

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Invertible Bloom Lookup Tables (IBLTs)
• Can we do better? Yes!

• M. Goodrich and M. Mitzenmacher  
"Invertible Bloom Lookup Tables”  
Proc. Conf. on Comm., Control, and Computing. pp. 792–799, Sept 2011

• D. Eppstein, M. Goodrich, F. Uyeda, G. Varghese 
"What's the difference?: efficient set reconciliation without prior context."  
Prof. ACM SIGCOMM 2011

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Invertible Bloom Lookup Tables (IBLTs)
• Invertible Bloom Lookup Tables are a generalization of Bloom Filters.

• Instead of a bit, cells include a count and actual content.

A,B, C, D,
E, F, G

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Invertible Bloom Lookup Tables (IBLTs)
• Invertible Bloom Lookup Tables are a generalization of Bloom Filters.

• Instead of a bit, cells include a count and actual content.

A,B, C, D,
E, F, G

• Special IBLT feature:
• If you have two lists that differ by no more than ~15%, you can compare

an IBLT of each list and recover the items that are different.

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Invertible Bloom Lookup Tables (IBLTs)
• Invertible Bloom Lookup Tables are a generalization of Bloom Filters.

• Instead of a bit, cells include a count and actual content.

A,B, C, D,
E, F, G

A,B, C, X,
E, F, G

• Special IBLT feature:
• If you have two lists that differ by no more than ~15%, you can compare

an IBLT of each list and recover the items that are different.

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Invertible Bloom Lookup Tables (IBLTs)
• Invertible Bloom Lookup Tables are a generalization of Bloom Filters.

• Instead of a bit, cells include a count and actual content.

A,B, C, D,
E, F, G

A,B, C, X,
E, F, G

— = +D 
-X

• Special IBLT feature:
• If you have two lists that differ by no more than ~15%, you can compare

an IBLT of each list and recover the items that are different.

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Invertible Bloom Lookup Tables (IBLTs)
• Invertible Bloom Lookup Tables are a generalization of Bloom Filters.

• Instead of a bit, cells include a count and actual content.

A,B, C, D,
E, F, G

A,B, C, X,
E, F, G

— = +D 
-X

• Special IBLT feature:
• If you have two lists that differ by no more than ~15%, you can compare

an IBLT of each list and recover the items that are different.
• The size of IBLTs does not depend on the original list.
• The size depends on only the expected difference between the two lists.

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Protocol 4: IBLTs

• Works very well until the receiver’s
mempool size is much larger than the
block.

• The size of the IBLT will depend on
the symmetric difference between the
block and the receiver’s mempool.

• But we don’t know this value and don’t
want to waste roundtrip times failing.

Alice

has
block

Bob

wants
block

Gavin Andresen; 
Rosenbaum and Russell

mempool

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Protocol 4: IBLTs

• Works very well until the receiver’s
mempool size is much larger than the
block.

• The size of the IBLT will depend on
the symmetric difference between the
block and the receiver’s mempool.

• But we don’t know this value and don’t
want to waste roundtrip times failing.

Alice

has
block

Bob

wants
block

(prioritize TXN inv’s)

Gavin Andresen; 
Rosenbaum and Russell

mempool

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Protocol 4: IBLTs

• Works very well until the receiver’s
mempool size is much larger than the
block.

• The size of the IBLT will depend on
the symmetric difference between the
block and the receiver’s mempool.

• But we don’t know this value and don’t
want to waste roundtrip times failing.

inv

Alice

has
block

Bob

wants
block

(prioritize TXN inv’s)

Gavin Andresen; 
Rosenbaum and Russell

mempool

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Protocol 4: IBLTs

• Works very well until the receiver’s
mempool size is much larger than the
block.

• The size of the IBLT will depend on
the symmetric difference between the
block and the receiver’s mempool.

• But we don’t know this value and don’t
want to waste roundtrip times failing.

getdata
inv

Alice

has
block

Bob

wants
block

(prioritize TXN inv’s)

Gavin Andresen; 
Rosenbaum and Russell

mempool

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Protocol 4: IBLTs

• Works very well until the receiver’s
mempool size is much larger than the
block.

• The size of the IBLT will depend on
the symmetric difference between the
block and the receiver’s mempool.

• But we don’t know this value and don’t
want to waste roundtrip times failing.

getdata
inv

Alice

has
block

Bob

wants
block

(prioritize TXN inv’s)

header, I=IBLT(txnIDs)

Gavin Andresen; 
Rosenbaum and Russell

mempool

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Protocol 4: IBLTs

• Works very well until the receiver’s
mempool size is much larger than the
block.

• The size of the IBLT will depend on
the symmetric difference between the
block and the receiver’s mempool.

• But we don’t know this value and don’t
want to waste roundtrip times failing.

getdata
inv

Alice

has
block

Bob

wants
block

(prioritize TXN inv’s)

I’= IBLT(mempool) 
if (I-I’) decodes, DONE

else repeat with larger IBLT

header, I=IBLT(txnIDs)

Gavin Andresen; 
Rosenbaum and Russell

mempool

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Performance
• Bytes are proportional to

symmetric difference
between block and
mempool.

• Can we do better? Yes!

●●●●
●

●

●●

●●

0 8000 16000 24000 32000 40000

0

50

100

150

200

250

300

0 1 2 3 4 5 6 7 8 9 10

txns

Original Block Size (MB)

R
es

ul
tin

g
Bl

oc
k

(K
B)

●● Compact Blocks
Mempool=100

Mempool=1000
Mempool=10000

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Protocol 5: Graphene
• It’s expensive to make Bloom Filters when symmetric difference is high. 

It’s expensive to make IBLTs when symmetric difference is high. 

• Solution:
• use a Bloom Filter to reduce the symmetric difference between block and

mempool.
• use the IBLT to recover from small errors in the Bloom Filter

• We don’t need a very low FPR for the Bloom Filter because the IBLT will help
us recover.

• Recall that the size of the IBLT is based on only the difference between two lists.

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Optimally Small
• We shrink the Bloom filter to an FPR=1/m.

• We expect one false positive.
• Make an IBLT expecting just one difference. It will be a small IBLT.
• The output of comparing the two IBLTs will be exactly which txnID is the false positive.

• It turns out, we can parameterize the FPR and IBLT together so that the sum
bytes are optimally small.

• Roughly, given a block of n transactions and a mempool of m transactions,  
the FPR that provides the optimally small sized of IBLT and BF is  
 
FPR =

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Protocol 5: Graphene

• We ensure that the IBLT decodes by setting the FPR correctly.
• Decode failure is 1 in a 1000.

inv

Alice

has
block

Bob

wants
block

(prioritize TXN inv’s)

mempool

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Protocol 5: Graphene

• We ensure that the IBLT decodes by setting the FPR correctly.
• Decode failure is 1 in a 1000.

getdata, m
inv

Alice

has
block

Bob

wants
block

(prioritize TXN inv’s)

mempool

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Protocol 5: Graphene

• We ensure that the IBLT decodes by setting the FPR correctly.
• Decode failure is 1 in a 1000.

getdata, m
inv

Alice

has
block

Bob

wants
block

(prioritize TXN inv’s)

header, S=Bloom(txnIDs), 
I=IBLT(txnIDs) mempool

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Protocol 5: Graphene

• We ensure that the IBLT decodes by setting the FPR correctly.
• Decode failure is 1 in a 1000.

getdata, m
inv

Alice

has
block

Bob

wants
block

(prioritize TXN inv’s)

m’ = mempool found in S
I’= IBLT(m’) 
if I-I’ decodes, DONE;  
else repeat with larger IBLT

header, S=Bloom(txnIDs), 
I=IBLT(txnIDs) mempool

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Graphene Performance

●

●

●

●

●

0 1000 2000 3000 4000

0
2
4
6
8

10
12
14
16
18
20
22
24
26

0
2
4
6
8
10
12
14
16
18
20
22
24
26

0.0 0.2 0.4 0.6 0.8 1.0

txns

Original Block Size (MB)

R
es

ul
tin

g
Bl

oc
k

(K
B)

R
esulting Block (KB)

●● Compact Blocks

Mempool=0

Mempool=100

Mempool=1000

Mempool=10000

Mempool=100000

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Graphene Performance

●●●
●

●

●

●●

●●

0 10000 20000 30000 40000

0

20

40

60

80

100

120

140

160

180

200

0

20

40

60

80

100

120

140

160

180

200

0 1 2 3 4 5 6 7 8 9 10

txns

Original Block Size (MB)

R
es

ul
tin

g
Bl

oc
k

(K
B)

R
esulting Block (KB)

●● Compact Blocks

Mempool=0

Mempool=100

Mempool=1000

Mempool=10000

Mempool=100000

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Conclusions
• Graphene’s block announcements are ⅒ the size of current methods.

• Fits within one IP packet
• No increase in roundtrip time of Compact Blocks
• Not a significant use of storage or CPU.

• Combines two known tools from set reconciliation literature in a nifty way.
• Bloom Filters and IBLTs

• PDF: http:forensics.cs.umass.edu/graphene

200,000

100,000

50,000

25,000

75,000

125,000

175,000

150,000

0
May June July August September October November

2017

Unconfirmed Transaction Count (Mempool)

https://core.jochen-hoenicke.de/queue/#all

