Graphene: A New Protocol for Block Propagation Using Set Reconciliation

George Bissias
Gavin Andresen
Amir Houmansadr
Brian Neil Levine

UMassAmherst

Problem Definition

- This presentation is focused on relaying information quickly to a neighbor.
- on the fast Relay Network or the p2p network.
- It's about avoiding sending a lot of data between peers, like so:

Problem Definition

- This presentation is focused on relaying information quickly to a neighbor.
- on the fast Relay Network or the p2p network.
- It's about avoiding sending a lot of data between peers, like so:

mempool

Problem Definition

- This presentation is focused on relaying information quickly to a neighbor.
- on the fast Relay Network or the p2p network.
- It's about avoiding sending a lot of data between peers, like so:

Problem Definition

- This presentation is focused on relaying information quickly to a neighbor.
- on the fast Relay Network or the p2p network.
- It's about avoiding sending a lot of data between peers, like so:

Alice

Problem Definition

- This presentation is focused on relaying information quickly to a neighbor.
- on the fast Relay Network or the p2p network.
- It's about avoiding sending a lot of data between peers, like so:

Alice

Problem Definition

Alice

- Block announcements propagate faster when they are smaller.
- Faster propagation means less orphaning, which means mining is efficient.
- This isn't a presentation about reducing the size of the stored blockchain.

Results

- Graphene's block announcements are 1110 the size of current methods.
- No increase in roundtrip time.
- Not a significant use of storage or CPU.
- Combines two known tools from set reconciliation literature in a nifty way.
- Bloom Filters and IBLTs
- Why does it work? We are optimizing Bitcoin's special case:
- Everyone needs to know everything.
- Blocks are comprised of transactions that everyone should have heard already.

Overview

- A series of protocols:
- Compact Blocks
- Xtreme Thin Blocks
- Soot [fake]
- IBLTs
- Graphene

Protocol 1: Compact Blocks

BIP 152

Matt Corallo

Alice

- We don't need to send the full transactions.
- We can send just the 2xSHA256 (32-byte) transaction IDs.
- And we only need the first 5 or 6 bytes. Odds of mistake are 1 in a trillion.

Protocol 1: Compact Blocks

Alice

mempool

- We don't need to send the full transactions.
- We can send just the 2xSHA256 (32-byte) transaction IDs.
- And we only need the first 5 or 6 bytes. Odds of mistake are 1 in a trillion.

Protocol 1: Compact Blocks

BIP 152

Matt Corallo

Alice

mempool

- We don't need to send the full transactions.
- We can send just the 2xSHA256 (32-byte) transaction IDs.
- And we only need the first 5 or 6 bytes. Odds of mistake are 1 in a trillion
- Now a 1 MB block with can be expressed in $80+4200 * 5=21 \mathrm{~KB}$
- An 8 MB block reduces to $80+4200 * 8^{*} 5=164 \mathrm{~KB}$

Evaluation

- Linear growth with the number of transactions included in the block.
- Size is independent of mempool.

Protocol 2: Bloom Filters

- Can we do better? Yes!
- Our neighbors already have these transactions IDs.
- They are likely only missing a few.
- Alice can each express the set of transactions in the block or her mempool as a Bloom Filter.
- Bob could do the same thing!
- Bloom filters allow us to quickly check if an item is a member of a set.

Bloom Filter: Insertion

B. Bloom: Space/Time Trade-offs in Hash Coding with Allowable Errors.

Communications of the ACM i3(7), 422-426 (Jul i970)

Bloom Filter: Insertion

insert: $t x n_{1}$ $\mathrm{H}_{1}\left(t x n_{1}\right)=1$ $\mathrm{H}_{2}\left(t x n_{1}\right)=4$
B. Bloom: Space/Time Trade-offs in Hash Coding with Allowable Errors.

Communications of the $\mathrm{ACM}_{13}(7), 422^{-4} 426$ (Jul 1970)

Bloom Filter: Insertion

$[0]$	${ }^{[1]}$	${ }^{[2]}$				
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$

insert: $t x n_{1}$ $\mathrm{H}_{1}\left(t x n_{1}\right)=1$ $\mathrm{H}_{2}\left(t x n_{1}\right)=4$
B. Bloom: Space/Time Trade-offs in Hash Coding with Allowable Errors.

Communications of the $\mathrm{ACM}_{13}(7), 422^{-4} 426$ (Jul 1970)

Bloom Filter: Insertion

${ }^{[0]}$	11	[2]	[3]	[4]	[5]	${ }^{\text {[6] }}$
0	1	0	0	1	0	0

insert: $t x n_{1}$ $\mathrm{H}_{1}\left(t x n_{1}\right)=1$ $\mathrm{H}_{2}\left(t x n_{1}\right)=4$
B. Bloom: Space/Time Trade-offs in Hash Coding with Allowable Errors.

Communications of the $\mathrm{ACM}_{13}(7), 422^{-4} 426$ (Jul 1970)

Bloom Filter: Insertion

insert: $t x n_{1}$ $\mathrm{H}_{1}\left(t x n_{1}\right)=1$
$\mathrm{H}_{2}\left(t x n_{1}\right)=4$
insert: $t x n_{2}$
$\mathrm{H}_{1}\left(\right.$ txn $\left._{2}\right)=0$
$\mathrm{H}_{2}\left(\mathrm{txn}_{2}\right)=4$
B. Bloom: Space/Time Trade-offs in Hash Coding with Allowable Errors.

Communications of the ACM ${ }_{13}(7), 422^{-426}$ (Jul 1970)

Bloom Filter: Insertion

1	1			0	1	0	0	0

insert: $t x n_{1}$ $\mathrm{H}_{1}\left(t x n_{1}\right)=1$
$\mathrm{H}_{2}\left(t x n_{1}\right)=4$
insert: $t x n_{2}$
$\mathrm{H}_{1}\left(\right.$ txn $\left._{2}\right)=0$
$\mathrm{H}_{2}\left(\right.$ txn $\left._{2}\right)=4$
B. Bloom: Space/Time Trade-offs in Hash Coding with Allowable Errors.

Communications of the ACM ${ }_{13}(7), 422^{-426}$ (Jul 1970)

Bloom Filter: Insertion

1	1			0	1	0	0	0

insert: $t x n_{1}$ $\mathrm{H}_{1}\left(t x n_{1}\right)=1$
$\mathrm{H}_{2}\left(t x n_{1}\right)=4$
insert: $t x n_{2}$
$\mathrm{H}_{1}\left(\right.$ txn $\left._{2}\right)=0$
$\mathrm{H}_{2}\left(\right.$ txn $\left._{2}\right)=4$
B. Bloom: Space/Time Trade-offs in Hash Coding with Allowable Errors.

Communications of the ACM ${ }_{13}(7), 422^{-426}$ (Jul 1970)

Bloom Filters: Check

$[0]$		${ }^{[1]}$	${ }^{[2]}$	${ }^{[3]}$	${ }^{[4]}{ }^{[5]}$	
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$

Bloom Filters: Check

Is txn1 in the set?
$\mathrm{H}_{1}\left(t x n_{1}\right)=1, \mathrm{H}_{2}\left(t x n_{1}\right)=4$
cell $1=1$
cell $4=1$
Yes!
True Positive

Bloom Filters: Check

Is txn1 in the set?

$$
\begin{aligned}
& \mathrm{H}_{1}\left(\text { txn }_{1}\right)=1, \mathrm{H}_{2}\left(t x n_{1}\right)=4 \\
& \text { cell } 1=1 \\
& \text { cell } 4=1 \\
& \text { Yes! }
\end{aligned}
$$

True Positive

Is txn3 in the set?

$$
\begin{aligned}
& \mathrm{H}_{1}\left(t x n_{3}\right)=1, \mathrm{H}_{2}\left(t x n_{3}\right)=5 \\
& \text { cell } 1=1 \\
& \text { cell } 5=0 \\
& \mathrm{No!}
\end{aligned}
$$

Bloom Filters: Check

Is txn1 in the set?

$$
\begin{aligned}
& \mathrm{H}_{1}\left(\text { txn }_{1}\right)=1, \mathrm{H}_{2}\left(\text { txn }_{1}\right)=4 \\
& \text { cell } 1=1 \\
& \text { cell } 4=1 \\
& \text { Yes! }
\end{aligned}
$$

True Positive

Is txn 3 in the set?

$\mathrm{H}_{1}\left(\right.$ txn $\left._{3}\right)=1, \mathrm{H}_{2}\left(\right.$ txn $\left._{3}\right)$	$=5$
cell 1	$=1$
cell 5	$=0$
No	

Is txn4 in the set?

$$
\begin{aligned}
& \mathrm{H}_{1}\left(\text { txn }_{4}\right)=0, \mathrm{H}_{2}\left(t x n_{4}\right)=1 \\
& \text { cell } 0=1 \\
& \text { cell } 1=1 \\
& \text { Yes! }
\end{aligned}
$$

False Positive

Bloom Filters: Check

1	1	0		0	1	0		0

False Negatives are not possible.
Is txn1 in the set?

$H_{1}\left(\right.$ txn $\left._{1}\right)=1, H_{2}\left(\right.$ txn $\left._{1}\right)$	$=4$
cell 1	$=1$
cell 4	$=1$
Yes!	

True Positive
Is txn3 in the set?
$\mathrm{H}_{1}\left(\right.$ txn $\left._{3}\right)=1, \mathrm{H}_{2}\left(\right.$ txn $\left._{3}\right)=5$
cell $1=1$
cell $5=0$
No!

$$
\begin{aligned}
& \text { Is txn4 in the set? } \\
& \begin{aligned}
& \mathrm{H}_{1}\left(\text { txn }_{4}\right)=0, \mathrm{H}_{2}\left(\text { txn }_{4}\right)=1 \\
& \text { cell } 0=1 \\
& \text { cell } 1=1 \\
& \text { Yes! }
\end{aligned}
\end{aligned}
$$

False Positive

Bloom Filters: Check

False Negatives are not possible.

Is txn1 in the set?	
$\mathrm{H}_{1}\left(\right.$ txn $\left._{1}\right)=1, \mathrm{H}_{2}\left(\right.$ txn $\left._{1}\right)$	$=4$
cell 1	$=1$
cell 4	$=1$
Yes!	

True Positive
Is txn3 in the set?
$\mathrm{H}_{1}\left(\right.$ txn $\left._{3}\right)=1, \mathrm{H}_{2}\left(\right.$ txn $\left._{3}\right)=5$
cell $1=1$
cell $5=0$
No!

The False Positive Rate is tunable: More bits will lower the FPR.

Protocol 2: Xtreme Thinblocks Peter Bsaliper

0

Alice

- We are sending all txnIDs and we are sending a Bloom Filter.
- This is more data across the network than Compact Blocks.

Protocol 2: Xtreme Thinblocks Peer sasimper

 Alice

- We are sending all txnIDs and we are sending a Bloom Filter.
- This is more data across the network than Compact Blocks.

Protocol 2: Xtreme Thinblocks Peer sasimper

 Alice

- We are sending all txnIDs and we are sending a Bloom Filter.
- This is more data across the network than Compact Blocks.

Protocol 2: Xtreme Thinblocks Peer sasimper

Alice

Bob
wants
block
mempool

- We are sending all txnIDs and we are sending a Bloom Filter.
- This is more data across the network than Compact Blocks.

Protocol 3: Soot

\section*{| has Alice |
| :---: |
| block |
| $\binom{2}{0}$ |}

- We need a low FPR for the
- Soot is not a real protocol...
- Send INV for each TXNs in the block ahead of the block INV.
- if they haven't already been sent or received.

Sender's Bloom filter.

- Can't base it on size of the block!
- Let \mathbf{m} be the number of transactions in the mempool.

Protocol 3: Soot

- We need a low FPR for the Sender's Bloom filter.
- Can't base it on size of the block!
- Let \mathbf{m} be the number of transactions in the mempool.
- Soot is not a real protocol...
- Send INV for each TXNs in the block ahead of the block INV.
- if they haven't already been sent or received.

Protocol 3: Soot

- Soot is not a real protocol...
- Send INV for each TXNs in the block ahead of the block INV.
- if they haven't already been sent or received.
- We need a low FPR for the Sender's Bloom filter.
- Can't base it on size of the block!
- Let \mathbf{m} be the number of transactions in the mempool.

Protocol 3: Soot

- Soot is not a real protocol...
- Send INV for each TXNs in the block ahead of the block INV.
- if they haven't already been sent or received.
- We need a low FPR for the Sender's Bloom filter.
- Can't base it on size of the block!
- Let \mathbf{m} be the number of transactions in the mempool.

Protocol 3: Soot

- Soot is not a real protocol...
- Send INV for each TXNs in the block ahead of the block INV.
- if they haven't already been sent or received.
- We need a low FPR for the Sender's Bloom filter.
- Can't base it on size of the block!
- Let \mathbf{m} be the number of transactions in the mempool.

Protocol 3: Soot

- Soot is not a real protocol...
- Send INV for each TXNs in the block ahead of the block INV.
- if they haven't already been sent or received.
- We need a low FPR for the Sender's Bloom filter.
- Can't base it on size of the block!
- Let \mathbf{m} be the number of transactions in the mempool.

Protocol 3: Soot

- If $\mathbf{F P R}=\mathbf{1 / m}$, then we expect 1 transaction from mempool to falsely appear to be in the block.
- Block reconstruction will fail every block!

Protocol 3: Soot

Block = mempool found in S

- If $\mathbf{F P R}=\mathbf{1 / m}$, then we expect 1 transaction from mempool to falsely appear to be in the block.
- Block reconstruction will fail every block!
- If $\mathbf{F P R}=\mathbf{1 / (1 0 0 m})$, once every 100 blocks, the receiver will fail to reconstruct the block.
- In that case, fall back to Compact Blocks.

Performance of $\mathbf{1 / (1 0 0 m})$ Soot

Performance now depends on size of the mempool.

Performance of $1 /(100 \mathrm{~m})$ Soot

Performance now depends on size of the mempool.

Invertible Bloom Lookup Tables (IBLTs)

- Can we do better? Yes!
- M. Goodrich and M. Mitzenmacher
"Invertible Bloom Lookup Tables"
Proc. Conf. on Comm., Control, and Computing. pp. 792-799, Sept 2011
- D. Eppstein, M. Goodrich, F. Uyeda, G. Varghese "What's the difference?: efficient set reconciliation without prior context." Prof. ACM SIGCOMM 2011

Invertible Bloom Lookup Tables (IBLTs)

- Invertible Bloom Lookup Tables are a generalization of Bloom Filters.
- Instead of a bit, cells include a count and actual content.

$$
\begin{aligned}
& \text { A,B, C, D, } \\
& \text { E, F, G }
\end{aligned}
$$

Invertible Bloom Lookup Tables (IBLTs)

- Invertible Bloom Lookup Tables are a generalization of Bloom Filters.
- Instead of a bit, cells include a count and actual content.

$$
\begin{aligned}
& A, B, C, D, \\
& E, F, G
\end{aligned}
$$

- Special IBLT feature:
- If you have two lists that differ by no more than $\mathbf{\sim 1 5 \%}$, you can compare an IBLT of each list and recover the items that are different.

Invertible Bloom Lookup Tables (IBLTs)

- Invertible Bloom Lookup Tables are a generalization of Bloom Filters.
- Instead of a bit, cells include a count and actual content.

$$
\begin{aligned}
& \text { A,B, C, D, } \\
& \text { E, F, G }
\end{aligned}
$$

A, B, C, X, E, F, G

- Special IBLT feature:
- If you have two lists that differ by no more than $\mathbf{\sim 1 5 \%}$, you can compare an IBLT of each list and recover the items that are different.

Invertible Bloom Lookup Tables (IBLTs)

- Invertible Bloom Lookup Tables are a generalization of Bloom Filters.
- Instead of a bit, cells include a count and actual content.

$$
\begin{aligned}
& \text { A,B, C, D, } \\
& \text { E, F, G }
\end{aligned}
$$

$=\quad+\mathrm{D}$
A,B, C, \mathbf{X}, E, F, G

- Special IBLT feature:
- If you have two lists that differ by no more than $\mathbf{\sim 1 5 \%}$, you can compare an IBLT of each list and recover the items that are different.

Invertible Bloom Lookup Tables (IBLTs)

- Invertible Bloom Lookup Tables are a generalization of Bloom Filters.
- Instead of a bit, cells include a count and actual content.

$$
\begin{aligned}
& \text { A,B, C, D, } \\
& \text { E, F, G }
\end{aligned}
$$

A,B, C, \mathbf{X}, E, F, G

- Special IBLT feature:
- If you have two lists that differ by no more than $\mathbf{\sim 1 5 \%}$, you can compare an IBLT of each list and recover the items that are different.
- The size of IBLTs does not depend on the original list.
- The size depends on only the expected difference between the two lists.

Protocol 4: IBLTs

Gavin Andresen;
Rosenbaum and Russell

Alice

wants block

- Works very well until the receiver's mempool size is much larger than the block.
- The size of the IBLT will depend on the symmetric difference between the block and the receiver's mempool.
- But we don't know this value and don't want to waste roundtrip times failing.

Protocol 4: IBLTs

Gavin Andresen;
Rosenbaum and Russell

(prioritize TXN inv's)

wants block

- Works very well until the receiver's mempool size is much larger than the block.
- The size of the IBLT will depend on the symmetric difference between the block and the receiver's mempool.
- But we don't know this value and don't want to waste roundtrip times failing.

Protocol 4: IBLTs

Gavin Andresen;
Rosenbaum and Russell

(prioritize TXN inv's)

wants block

mempool

- Works very well until the receiver's mempool size is much larger than the block.
- The size of the IBLT will depend on the symmetric difference between the block and the receiver's mempool.
- But we don't know this value and don't want to waste roundtrip times failing.

Protocol 4: IBLTs

Gavin Andresen;
Rosenbaum and Russell

wants block

mempool

- Works very well until the receiver's mempool size is much larger than the block.
- The size of the IBLT will depend on the symmetric difference between the block and the receiver's mempool.
- But we don't know this value and don't want to waste roundtrip times failing.

Protocol 4: IBLTs

Gavin Andresen;
Rosenbaum and Russell

wants block

mempool

- Works very well until the receiver's mempool size is much larger than the block.
- The size of the IBLT will depend on the symmetric difference between the block and the receiver's mempool.
- But we don't know this value and don't want to waste roundtrip times failing.

Protocol 4: IBLTs

Gavin Andresen;
Rosenbaum and Russell

- Works very well until the receiver's mempool size is much larger than the block.
- The size of the IBLT will depend on the symmetric difference between the block and the receiver's mempool.
- But we don't know this value and don't want to waste roundtrip times failing.

Performance

- Bytes are proportional to symmetric difference between block and mempool.
- Can we do better? Yes!

Protocol 5: Graphene

- It's expensive to make Bloom Filters when symmetric difference is high. It's expensive to make IBLTs when symmetric difference is high.
- Solution:
- use a Bloom Filter to reduce the symmetric difference between block and mempool.
- use the IBLT to recover from small errors in the Bloom Filter
- We don't need a very low FPR for the Bloom Filter because the IBLT will help us recover.
- Recall that the size of the IBLT is based on only the difference between two lists.

Optimally Small

- We shrink the Bloom filter to an FPR=1/m.
- We expect one false positive.
- Make an IBLT expecting just one difference. It will be a small IBLT.
- The output of comparing the two IBLTs will be exactly which txnID is the false positive.
- It turns out, we can parameterize the FPR and IBLT together so that the sum bytes are optimally small.
- Roughly, given a block of \mathbf{n} transactions and a mempool of \mathbf{m} transactions, the FPR that provides the optimally small sized of IBLT and BF is
FPR $=\frac{n}{132 \cdot(m-n) \ln ^{2}(2)}$

Protocol 5: Graphene

- We ensure that the IBLT decodes by setting the FPR correctly.
- Decode failure is 1 in a 1000.

Protocol 5: Graphene

- We ensure that the IBLT decodes by setting the FPR correctly.
- Decode failure is 1 in a 1000.

Protocol 5: Graphene

- We ensure that the IBLT decodes by setting the FPR correctly.
- Decode failure is 1 in a 1000.

Protocol 5: Graphene

- We ensure that the IBLT decodes by setting the FPR correctly.
- Decode failure is 1 in a 1000.

Graphene Performance

Graphene Performance

Conclusions

- Graphene's block announcements are 1110 the size of current methods.
- Fits within one IP packet
- No increase in roundtrip time of Compact Blocks
- Not a significant use of storage or CPU.
- Combines two known tools from set reconciliation literature in a nifty way.
- Bloom Filters and IBLTs
- PDF: http:forensics.cs.umass.edu/graphene

