Low-Variance Mining with Bobtail

– or – Why Variance is the Root of All Evil

George Bissias and Brian Neil Levine

College of Information & Computer Sciences

Overview

- The variance of Bitcoin's inter-block delay is more than an annoyance.
- It's at the root of doublespend, selfish mining, and eclipse attacks.
- We propose a simple method of low-variance mining
- We evaluate its performance and show how it increases security
- We talk about consequences of deployment

UNIVERSITY OF MASSACHUSETTS AMHERST

UNIVERSITY OF MASSACHUSETTS AMHERST

5% of blocks take at least 30 minutes 80% of blocks are between 1–24 minutes T https://arxiv.org/abs/1709.08750

UNIVERSITY OF MASSACHUSETTS AMHERST

80% of blocks take at least 30 minutes 80% of blocks are between 1–24 minutes https://arxiv.org/abs/1709.08750

MASSACHUSETTS AMHERS ΟF

Variance in PoW Mining

- Inter-block time variance is due to Proof of Work mining.
 - Each miner samples from a uniform distribution
 - The first miner to find 1 sample below a target wins.

- Until they pick a number that meets the target.
 - When the network of miners get lucky, blocks come early.
 - When the network of miners get very unlucky, blocks come late.

Variance in PoW Mining

- Inter-block time variance is due to Proof of Work mining.
 - Each miner samples from a uniform distribution
 - The first miner to find 1 sample below a target wins.

- Until they pick a number that meets the target.
 - When the network of miners get lucky, blocks come early.
 - When the network of miners get very unlucky, blocks come late.

Variance is the root of all evil

- With low variance between blocks, blockchains would perform more consistently.
 - Fast blocktimes are what some competitors have over Bitcoin.
 - Waiting 6 blocks to overcome fear of doublespend is a drag.
 - Wouldn't it be better if blocks almost always arrived within 7–12 minutes?
 - And if we were confident about waiting just 1 block?
 - But variance is not just an inconvenience:
- High variance mining is the cause of low security in blockchains.

UNIVERSITY OF MASSACHUSETTS AMHERST

Variance is the root of all evil

- When you enter a casino, the house has the advantage.
 - In expectation the house will win.
 - Your goal is to keep betting until you are ahead, and then exit.
 - This strategy is possible because you are taking advantage of variance
 - The house occasionally loses, possibly a few times in a row.

UNIVERSITY OF MASSACHUSETTS AMHERST

- **Doublespend attacks** are a race between honest and attacking miners.
- Just like in the casino, there is a non-zero chance she'll win.
- She's waiting for either:
 - the honest miners to hit a sequence of unlucky block discovery times
 - for herself to hit a sequence of lucky block discovery times.

UNIVERSITY OF MASSACHUSETTS AMHERST

- **Doublespend attacks** are a race between honest and attacking miners.
- Just like in the casino, there is a non-zero chance she'll win.
- She's waiting for either:
 - the honest miners to hit a sequence of unlucky block discovery times
 - for herself to hit a sequence of lucky block discovery times.

UNIVERSITY OF MASSACHUSETTS AMHERST

- **Doublespend attacks** are a race between honest and attacking miners.
- Just like in the casino, there is a non-zero chance she'll win.
- She's waiting for either:
 - the honest miners to hit a sequence of unlucky block discovery times
 - for herself to hit a sequence of lucky block discovery times.

- **Doublespend attacks** are a race between honest and attacking miners.
- Just like in the casino, there is a non-zero chance she'll win.
- She's waiting for either:
 - the honest miners to hit a sequence of unlucky block discovery times
 - for herself to hit a sequence of lucky block discovery times.

- **Doublespend attacks** are a race between honest and attacking miners.
- Just like in the casino, there is a non-zero chance she'll win.
- She's waiting for either:
 - the honest miners to hit a sequence of unlucky block discovery times
 - for herself to hit a sequence of lucky block discovery times.

- **Doublespend attacks** are a race between honest and attacking miners.
- Just like in the casino, there is a non-zero chance she'll win.
- She's waiting for either:
 - the honest miners to hit a sequence of unlucky block discovery times
 - for herself to hit a sequence of lucky block discovery times.

0000

- **Doublespend attacks** are a race between honest and attacking miners.
- Just like in the casino, there is a non-zero chance she'll win.
- She's waiting for either:
 - the honest miners to hit a sequence of unlucky block discovery times
 - for herself to hit a sequence of lucky block discovery times.

- **Doublespend attacks** are a race between honest and attacking miners.
- Just like in the casino, there is a non-zero chance she'll win.
- She's waiting for either:
 - the honest miners to hit a sequence of unlucky block discovery times
 - for herself to hit a sequence of lucky block discovery times.

- **Doublespend attacks** are a race between honest and attacking miners.
- Just like in the casino, there is a non-zero chance she'll win.
- She's waiting for either:
 - the honest miners to hit a sequence of unlucky block discovery times
 - for herself to hit a sequence of lucky block discovery times.

- **Doublespend attacks** are a race between honest and attacking miners.
- Just like in the casino, there is a non-zero chance she'll win.
- She's waiting for either:
 - the honest miners to hit a sequence of unlucky block discovery times
 - for herself to hit a sequence of lucky block discovery times.

- Selfish mining attacks have the same story.
- Several countries are considering launching blockchains
 - Some countries are starting to not like them.
- What is the current defense against Nation/state-based SM attacks on a currency?

UNIVERSITY OF MASSACHUSETTS AMHERST

- Selfish mining attacks have the same story.
- Several countries are considering launching blockchains
 - Some countries are starting to not like them.
- What is the current defense against Nation/state-based SM attacks on a currency?

UNIVERSITY OF MASSACHUSETTS AMHERST

- Selfish mining attacks have the same story.
- Several countries are considering launching blockchains
 - Some countries are starting to not like them.
- What is the current defense against Nation/state-based SM attacks on a currency?

UNIVERSITY OF MASSACHUSETTS AMHERST

- Selfish mining attacks have the same story.
- Several countries are considering launching blockchains
 - Some countries are starting to not like them.
- What is the current defense against Nation/state-based SM attacks on a currency?

UNIVERSITY OF MASSACHUSETTS AMHERST

- Selfish mining attacks have the same story.
- Several countries are considering launching blockchains
 - Some countries are starting to not like them.
- What is the current defense against Nation/state-based SM attacks on a currency?

UNIVERSITY OF MASSACHUSETTS AMHERST

- Selfish mining attacks have the same story.
- Several countries are considering launching blockchains
 - Some countries are starting to not like them.
- What is the current defense against Nation/state-based SM attacks on a currency?

UNIVERSITY OF MASSACHUSETTS AMHERST

- Selfish mining attacks have the same story.
- Several countries are considering launching blockchains
 - Some countries are starting to not like them.
- What is the current defense against Nation/state-based SM attacks on a currency?

UNIVERSITY OF MASSACHUSETTS AMHERST

- Selfish mining attacks have the same story.
- Several countries are considering launching blockchains
 - Some countries are starting to not like them.
- What is the current defense against Nation/state-based SM attacks on a currency?

UNIVERSITY OF MASSACHUSETTS AMHERST

- Selfish mining attacks have the same story.
- Several countries are considering launching blockchains
 - Some countries are starting to not like them.
- What is the current defense against Nation/state-based SM attacks on a currency?

UNIVERSITY OF MASSACHUSETTS AMHERST

- Selfish mining attacks have the same story.
- Several countries are considering launching blockchains
 - Some countries are starting to not like them.
- What is the current defense against Nation/state-based SM attacks on a currency?

UNIVERSITY OF MASSACHUSETTS AMHERST

- Selfish mining attacks have the same story.
- Several countries are considering launching blockchains
 - Some countries are starting to not like them.
- What is the current defense against Nation/state-based SM attacks on a currency?

UNIVERSITY OF MASSACHUSETTS AMHERST

- Bobtail: the mean of the *k*-lowest samples must be below the target.
 - The samples come from all miners.

k = 4

- Bobtail: the mean of the *k*-lowest samples must be below the target.
 - The samples come from all miners.

k = 4

- Bobtail: the mean of the *k*-lowest samples must be below the target.
 - The samples come from all miners.

- Bobtail: the mean of the *k*-lowest samples must be below the target.
 - The samples come from all miners.

- Bobtail: the mean of the *k*-lowest samples must be below the target.
 - The samples come from all miners.

- Bobtail: the mean of the *k*-lowest samples must be below the target.
 - The samples come from all miners.

- Bobtail: the mean of the *k*-lowest samples must be below the target.
 - The samples come from all miners.

- Bobtail: the mean of the *k*-lowest samples must be below the target.
 - The samples come from all miners.

- Bobtail: the mean of the *k*-lowest samples must be below the target.
 - The samples come from all miners.

- Bobtail: the mean of the *k*-lowest samples must be below the target.
 - The samples come from all miners.

• Target is adjusted so there is no change in the expected number of samples.

$$t_k = \frac{t_1(k+1)}{2}$$

- k can be raised or lowered from one block to the next without issues.
- This is basic applied statistics:
 - if you want a better estimate, take more samples.
 - Compared to Bitcoin, variance of inter-block time is reduced:

Reduction in variance:
$$\frac{8k+4}{6(k^2+k)} = O\left(\frac{1}{k}\right)$$

UNIVERSITY OF MASSACHUSETTS AMHERST

5% of blocks take at least 30 minutes 80% of blocks are between 1–24 minutes

UNIVERSITY OF MASSACHUSETTS AMHERST

5% of blocks take at least 30 minutes 80% of blocks are between 1–24 minutes

UNIVERSITY OF MASSACHUSETTS AMHERST

5% of blocks take at least 30 minutes 80% of blocks are between 1–24 minutes

UNIVERSITY OF MASSACHUSETTS AMHERST

For Bitcoin now (k=1):

• Worst 5% of blocks take 30–70 minutes.

UNIVERSITY OF MASSACHUSETTS AMHERST

For Bitcoin now (k=1):

- Worst 5% of blocks take 30–70 minutes.
- Middle 80% of blocks take 1–24 minutes.

UNIVERSITY OF MASSACHUSETTS AMHERST

https://arxiv.org/abs/1709.08750

For *k=40*:

- Worst 5% of blocks take 13–18 minutes.
 - eclipse attacks are trivial to detect.
- Middle 80% of blocks take 7–12 minutes.

UNIVERSITY OF MASSACHUSETTS AMHERST

Increased Security: Doublespend

For Bitcoin now (k=1):

- A 20% miner has a 13% chance of doublespend at z=1 blocks.
- And 1% chance at z=6 blocks.

When k=5, the 20% miner at z=1 block is 1%.

Increased Security: Doublespend

For Bitcoin now (k=1):

- A 20% miner has a 13% chance of doublespend at z=1 blocks.
- And 1% chance at z=6 blocks.

When k=5, the 20% miner at z=1 block is 1%.

Doublespend for z=1 block

- When k=40, Bitcoin double spending after z=1 blocks requires ~40% of the mining power to get above 1% chance of success.
- 50x improvement.

Doublespend for z=1 block

- When k=40, Bitcoin double spending after z=1 blocks requires ~40% of the mining power to get above 1% chance of success.
- 50x improvement.

Selfish Mining can be eliminated

• With Bitcoin, any amount of mining power enables the attack.

ΟF

UNIVERSITY

Selfish Mining can be eliminated

- With Bitcoin, any amount of mining power enables the attack.
- When k≥5, attackers need 43% of the mining power to selfish mine.
- When k≥20, attackers need 49% of the mining power to selfish mine.
- No other defense against DoS attacks are available.
 - *k* can be adjusted on the fly.

Version 1 Deployment (Naive)

- Naive version: miners simply announce block headers as they find them.
- Each new block on the chain is a collection of *k* full headers.
 - Instead of an 80-byte header, headers would be *k*80* bytes.
 - That's 800B for k=10, and 3KB for k=40
- A lot of traffic as values are found.
 - But values greater than *k*target* will never be part of the block.
- Since headers can be stolen, no incentive for miners to share.

UNIVERSITY OF MASSACHUSETTS AMHERST

Version 2 Deployment (no stealing)

- Reward all miners who helped find the k values
- Miners collect transactions and create standard header, h.
- Bytes of 8Bytes of
 let v= Hash(Hash(h), prior, Address)
 - If v<kt, then miners announce the pre-image of 36 bytes
 - Recipients check if hash of pre-image is less than kt.
- Values cannot be stolen as **Address** is a part of the hash pre-image.
- Values cannot be reused since **prior** is part of the hash pre-image.
- Still: When a block is found, there are k-1 values that can be reused!

JNIVERSITY OF MASSACHUSETTS AMHERST

Version 3 (no reuse of values)

- To prevent this problem, we add another field to the hash.
 - Miners keep track of the Least Order Stat they've seen to date
 - v= Hash(Hash(h), Address, Prior, LOS)
 - 8+20+8+8= 44 bytes per k
 - No values can be included in the LOS is lower than the lowest OS.
 - Coinbase reward is via a ranking by LOS; ties are broken by v.
- Reduces the rewards for miners that attempt it.
 - This drastically reduces the opportunities for reuse.
 - This also thwarts hoarding among a collusion of miners.

Rewards

k	L.O.S.	Proof	Reward (BTC)
1	-	358325	11.9882020
2	358325	1217458	0.2827381
3	358325	1721868	0.1339286
4	358325	1777139	0.0632440
6	358325	1995396	0.0139509
8	358325	3621245	0.0030227
12	358325	4582015	0.0001308
14	358325	4781376	0.0000254
17	358325	7277279	0.0000018

k	L.O.S.	Proof	Reward (BTC)
9	1826037	3761724	0.0012788
11	1826037	4420661	0.0002906
15	1826037	6302668	0.0000109
18	1826037	7514262	0.0000007
19	1826037	7601030	0.000002
5	3521660	1826037	0.0111607
13	3521660	4707122	0.0000363
7	3927808	3521660	0.0018601
20	3927808	7881560	0.0000001
10	6374495	3927808	0.0001163
16	9175814	6374495	0.000009

UNIVERSITY OF MASSACHUSETTS AMHERST

Proportional Rewards

- Simulations show that rewards are proportion to mining power
- Results are same as Bitcoin • today.

UNIVERS

ITY

Frequently Asked Questions

- Doesn't this slow down the block announcements?
 - Seen my Graphene presentation?
 - Each k value has an INV.
 - And can be stuffed into Bloom Filter and IBLT.
- Don't the rich get richer?
 - No, that would be the case if we took the k-lowest values from **each** miner.
- What about existing ASICS?
 - Yes, I think maybe they can be used for this (possibly).

UNIVERSITY OF MASSACHUSETTS AMHERST

Using existing ASICs

- version (4)
 version (4)
- prior (32)

 address (20), and LOS (12)
- merkle (32) Hash(h)>> 24 (8), Prior>>24 (8), pad with 16 bytes of zeros
- time (4) → nonce (4)
- + kt bound • nBits (4)
- nonce (4)
 nonce (4)

64 bits of nonce to play with

Header would be 56(k-1)+80 bytes

OF MASSACHUSETTS AMHERST RSITY

Summary

	k	header (bytes)	coinbase (bytes)	equivalent to #TXNs	90% delay (minutes)	mining power needed for selfish mining	mining power needed to doublespend (2 blocks)
	1	80	205	0	¹ ⁄2 – 40	0%	10%
	5	256	345	1	3 ½ – 19	42%	20%
	10	476	520	3	5 – 16½	46%	25%
	20	916	870	7	6½ – 14½	49%	35%
	40	1796	1570	14	7 ½ – 13	49.5%	40%
U	NIVI	ERSITY	OF MASS	ACHUSET	TS AMHERS	https:/	/arxiv.org/abs/1709.08750

Conclusion

- Bobtail reduces inter-block time variance in PoW blockchains
 - by generalizing target criterion to k values.
- Significantly increases difficulty of doublespend
- Effectively eliminates selfish mining
- Reward rate and orphan rate do not change.
- Secure against attacks
- Cost is very small in terms of bytes.
- Adjustable and incrementally deployable

<u>bnl@umass.edu</u>

https://arxiv.org/abs/1709.08750

JNIVERSITY OF MASSACHUSETTS AMHERST

Conclusion

- Bobtail reduces inter-block time variance in PoW blockchains
 - by generalizing target criterion to k values.
- Significantly increases difficulty of doublespend
- Effectively eliminates selfish mining
- Reward rate and orphan rate do not change.
- Secure against attacks
- Cost is very small in terms of bytes.
- Adjustable and incrementally deployable

bnl@umass.edu

https://arxiv.org/abs/1709.08750

UNIVERSITY OF MASSACHUSETTS AMHERST